Coverart for item
The Resource Computer Vision and Machine Learning with RGB-D Sensors, edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang, (electronic resource)

Computer Vision and Machine Learning with RGB-D Sensors, edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang, (electronic resource)

Label
Computer Vision and Machine Learning with RGB-D Sensors
Title
Computer Vision and Machine Learning with RGB-D Sensors
Statement of responsibility
edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang
Creator
Contributor
Subject
Language
eng
Summary
  • The combination of high-resolution visual and depth sensing, supported by machine learning, opens up new opportunities to solve real-world problems in computer vision. This authoritative text/reference presents an interdisciplinary selection of important, cutting-edge research on RGB-D based computer vision. Divided into four sections, the book opens with a detailed survey of the field, followed by a focused examination of RGB-D based 3D reconstruction, mapping and synthesis. The work continues with a section devoted to novel techniques that employ depth data for object detection, segmentation and tracking, and concludes with examples of accurate human action interpretation aided by depth sensors. Topics and features: Discusses the calibration of color and depth cameras, the reduction of noise on depth maps, and methods for capturing human performance in 3D Reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption, and obtain accurate action classification Presents an innovative approach for 3D object retrieval, and for the reconstruction of gas flow from multiple Kinect cameras Describes an RGB-D computer vision system designed to assist the visually impaired, and another for smart-environment sensing to assist elderly and disabled people Examines the effective features that characterize static hand poses, and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing Proposes a new classifier architecture for real-time hand pose recognition, and a novel hand segmentation and gesture recognition system Researchers and practitioners working in computer vision, HCI and machine learning will find this to be a must-read text. The book also serves as a useful reference for graduate students studying computer vision, pattern recognition or multimedia
  • The combination of high-resolution visual and depth sensing, supported by machine learning, opens up new opportunities to solve real-world problems in computer vision. This authoritative text/reference presents an interdisciplinary selection of important, cutting-edge research on RGB-D based computer vision. Divided into four sections, the book opens with a detailed survey of the field, followed by a focused examination of RGB-D based 3D reconstruction, mapping and synthesis. The work continues with a section devoted to novel techniques that employ depth data for object detection, segmentation and tracking, and concludes with examples of accurate human action interpretation aided by depth sensors. Topics and features: Discusses the calibration of color and depth cameras, the reduction of noise on depth maps, and methods for capturing human performance in 3D Reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption, and obtain accurate action classification Presents an innovative approach for 3D object retrieval, and for the reconstruction of gas flow from multiple Kinect cameras Describes an RGB-D computer vision system designed to assist the visually impaired, and another for smart-environment sensing to assist elderly and disabled people Examines the effective features that characterize static hand poses, and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing Proposes a new classifier architecture for real-time hand pose recognition, and a novel hand segmentation and gesture recognition system Researchers and practitioners working in computer vision, HCI and machine learning will find this to be a must-read text. The book also serves as a useful reference for graduate students studying computer vision, pattern recognition or multimedia
  • The combination of high-resolution visual and depth sensing, supported by machine learning, opens up new opportunities to solve real-world problems in computer vision. This authoritative text/reference presents an interdisciplinary selection of important, cutting-edge research on RGB-D based computer vision. Divided into four sections, the book opens with a detailed survey of the field, followed by a focused examination of RGB-D based 3D reconstruction, mapping and synthesis. The work continues with a section devoted to novel techniques that employ depth data for object detection, segmentation and tracking, and concludes with examples of accurate human action interpretation aided by depth sensors. Topics and features: Discusses the calibration of color and depth cameras, the reduction of noise on depth maps, and methods for capturing human performance in 3D Reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption, and obtain accurate action classification Presents an innovative approach for 3D object retrieval, and for the reconstruction of gas flow from multiple Kinect cameras Describes an RGB-D computer vision system designed to assist the visually impaired, and another for smart-environment sensing to assist elderly and disabled people Examines the effective features that characterize static hand poses, and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing Proposes a new classifier architecture for real-time hand pose recognition, and a novel hand segmentation and gesture recognition system Researchers and practitioners working in computer vision, HCI and machine learning will find this to be a must-read text. The book also serves as a useful reference for graduate students studying computer vision, pattern recognition or multimedia
Member of
Is part of
http://library.link/vocab/creatorName
Shao, Ling
Dewey number
  • 006.6
  • 006.37
LC call number
  • TA1637-1638
  • TA1637-1638
http://library.link/vocab/relatedWorkOrContributorName
  • Han, Jungong
  • Kohli, Pushmeet
  • Zhang, Zhengyou
  • SpringerLink (Online service)
Series statement
Advances in Computer Vision and Pattern Recognition,
http://library.link/vocab/subjectName
  • Computer science
  • Artificial intelligence
  • Computer vision
  • Computer Science
  • Image Processing and Computer Vision
  • Artificial Intelligence (incl. Robotics)
  • User Interfaces and Human Computer Interaction
Label
Computer Vision and Machine Learning with RGB-D Sensors, edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang, (electronic resource)
Instantiates
Publication
Contents
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
Control code
OCM1bookssj0001295511
Dimensions
unknown
Isbn
9783319086507
Isbn Type
(print)
Other control number
10.1007/978-3-319-08651-4
Specific material designation
remote
System control number
(WaSeSS)bookssj0001295511
Label
Computer Vision and Machine Learning with RGB-D Sensors, edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang, (electronic resource)
Publication
Contents
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
  • Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor
Control code
OCM1bookssj0001295511
Dimensions
unknown
Isbn
9783319086507
Isbn Type
(print)
Other control number
10.1007/978-3-319-08651-4
Specific material designation
remote
System control number
(WaSeSS)bookssj0001295511

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...