Coverart for item
The Resource Eco-efficient Repair and Rehabilitation of Concrete Infrastructures

Eco-efficient Repair and Rehabilitation of Concrete Infrastructures

Label
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures
Title
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures
Creator
Subject
Language
eng
Summary
Annotation
Cataloging source
IDEBK
http://library.link/vocab/creatorName
Pacheco-Torgal, Fernando
Dewey number
624.2
Index
no index present
LC call number
TA682.446
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/subjectName
  • Concrete construction
  • Concrete construction
Summary expansion
This title provides an updated state-of-the-art review on eco-efficient repair and rehabilitation of concrete infrastructure. The first section focuses on deterioration assessment methods, and includes chapters on stress wave assessment, ground-penetrating radar, monitoring of corrosion, SHM using acoustic emission and optical fibre sensors. Other sections discuss the development and application of several new innovative repair and rehabilitation materials, including geopolymer concrete, sulfoaluminate cement-based concrete, engineered cementitious composites (ECC) based concrete, bacteria-based concrete, concrete with encapsulated polyurethane, and concrete with super absorbent polymer (SAPs), amongst other topics
Label
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures
Instantiates
Publication
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover -- Eco-efficient Repair and Rehabilitation of Concrete Infrastructures -- Copyright Page -- Contents -- List of contributors -- Foreword -- 1 Introduction -- 1.1 Repair and rehabilitation of concrete infrastructures on the context of sustainable development -- 1.2 Outline of the book -- References -- I. Deterioration assessment -- 2 Service life estimation of concrete infrastructures -- 2.1 Introduction -- 2.2 Causes of reinforced concrete infrastructure deterioration -- 2.2.1 Overview -- 2.2.2 Physical damage
  • 2.2.3 Material-related deterioration2.2.4 Atmosphere-related deterioration -- 2.2.5 Effect of seawater -- 2.2.6 Reinforcement corrosion -- 2.2.7 Summary -- 2.3 Carbonation-induced corrosion of reinforcement -- 2.4 Chloride-induced corrosion of reinforcement -- 2.5 Practical experience, observations and investigations -- 2.5.1 Introduction -- 2.5.2 Hornibrook Bridge, Brisbane -- 2.5.3 Handrails at Arbroath, Scotland -- 2.5.4 Other cases -- 2.5.5 Synthesis of observations -- 2.6 Recent research on the effects of chlorides
  • 2.7 Practical implications for service life assessment2.8 Closure and outlook -- Acknowledgments -- References -- 3 Impact of climate change on the service life of concrete structures -- 3.1 Introduction -- 3.2 Effect of climate on the mechanisms of degradation of concrete structures -- 3.2.1 Temperature -- 3.2.2 Relative humidity -- 3.2.3 Precipitation -- 3.2.4 Wind -- 3.2.5 Waves and tides -- 3.2.6 Chloride deposition -- 3.3 Climate change -- 3.3.1 Climate projection -- 3.3.2 Impact on concrete durability
  • 3.4 Example of a numerical applicationâ#x80;#x94;corrosion of reinforcements on the Brazilian coast3.4.1 Hypotheses -- 3.4.2 Study area -- 3.4.3 Data and scenario definitionâ#x80;#x94;temperature -- 3.4.4 Data and scenario definitionâ#x80;#x94;relative humidity -- 3.4.5 Models for predicting the chloride penetration -- 3.5 Final considerations -- References -- 4 Monitoring of Reinforced Concrete Corrosion -- 4.1 Introduction -- 4.2 Online monitoring of rebar corrosion -- 4.3 Embeddable sensors for chloride concentration, pH, and other parameters -- 4.3.1 Embeddable chloride sensors
  • 4.3.2 Embeddable pH sensors4.3.3 Other embeddable sensors -- 4.3.4 Concluding remarks -- 4.4 Accelerated testing of embeddable sensors: A case study -- 4.4.1 Sensors and sensing units tested -- 4.4.2 Procedure of accelerated weathering test -- 4.4.3 Results and discussion -- 4.4.4 Conclusions -- 4.5 Future research needs -- Acknowledgments -- References -- 5 Monitoring of concrete structures with optical fiber sensors -- 5.1 Introduction -- 5.2 Overview and classifications of optical fiber sensor technologies
Control code
1012280237
Dimensions
unknown
Extent
1 online resource
Form of item
online
Isbn
9780081021828
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
http://library.link/vocab/ext/overdrive/overdriveId
1048516
Specific material designation
remote
System control number
(OCoLC)1012280237
Label
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures
Publication
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover -- Eco-efficient Repair and Rehabilitation of Concrete Infrastructures -- Copyright Page -- Contents -- List of contributors -- Foreword -- 1 Introduction -- 1.1 Repair and rehabilitation of concrete infrastructures on the context of sustainable development -- 1.2 Outline of the book -- References -- I. Deterioration assessment -- 2 Service life estimation of concrete infrastructures -- 2.1 Introduction -- 2.2 Causes of reinforced concrete infrastructure deterioration -- 2.2.1 Overview -- 2.2.2 Physical damage
  • 2.2.3 Material-related deterioration2.2.4 Atmosphere-related deterioration -- 2.2.5 Effect of seawater -- 2.2.6 Reinforcement corrosion -- 2.2.7 Summary -- 2.3 Carbonation-induced corrosion of reinforcement -- 2.4 Chloride-induced corrosion of reinforcement -- 2.5 Practical experience, observations and investigations -- 2.5.1 Introduction -- 2.5.2 Hornibrook Bridge, Brisbane -- 2.5.3 Handrails at Arbroath, Scotland -- 2.5.4 Other cases -- 2.5.5 Synthesis of observations -- 2.6 Recent research on the effects of chlorides
  • 2.7 Practical implications for service life assessment2.8 Closure and outlook -- Acknowledgments -- References -- 3 Impact of climate change on the service life of concrete structures -- 3.1 Introduction -- 3.2 Effect of climate on the mechanisms of degradation of concrete structures -- 3.2.1 Temperature -- 3.2.2 Relative humidity -- 3.2.3 Precipitation -- 3.2.4 Wind -- 3.2.5 Waves and tides -- 3.2.6 Chloride deposition -- 3.3 Climate change -- 3.3.1 Climate projection -- 3.3.2 Impact on concrete durability
  • 3.4 Example of a numerical applicationâ#x80;#x94;corrosion of reinforcements on the Brazilian coast3.4.1 Hypotheses -- 3.4.2 Study area -- 3.4.3 Data and scenario definitionâ#x80;#x94;temperature -- 3.4.4 Data and scenario definitionâ#x80;#x94;relative humidity -- 3.4.5 Models for predicting the chloride penetration -- 3.5 Final considerations -- References -- 4 Monitoring of Reinforced Concrete Corrosion -- 4.1 Introduction -- 4.2 Online monitoring of rebar corrosion -- 4.3 Embeddable sensors for chloride concentration, pH, and other parameters -- 4.3.1 Embeddable chloride sensors
  • 4.3.2 Embeddable pH sensors4.3.3 Other embeddable sensors -- 4.3.4 Concluding remarks -- 4.4 Accelerated testing of embeddable sensors: A case study -- 4.4.1 Sensors and sensing units tested -- 4.4.2 Procedure of accelerated weathering test -- 4.4.3 Results and discussion -- 4.4.4 Conclusions -- 4.5 Future research needs -- Acknowledgments -- References -- 5 Monitoring of concrete structures with optical fiber sensors -- 5.1 Introduction -- 5.2 Overview and classifications of optical fiber sensor technologies
Control code
1012280237
Dimensions
unknown
Extent
1 online resource
Form of item
online
Isbn
9780081021828
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
http://library.link/vocab/ext/overdrive/overdriveId
1048516
Specific material designation
remote
System control number
(OCoLC)1012280237

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...