The Resource Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor
Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor
Resource Information
The item Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- In concept and execution, this book covers the field of EAP with careful attention to all its key aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. In this second edition the reader is brought current on promising advances in EAP that have occurred in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, carbon nanotube actuators, and more
- Language
- eng
- Edition
- 2nd ed.
- Extent
- 1 online resource (xvii, 765 pages)
- Contents
-
- Topic 1. Introduction -- Chapter 1. EAP history, current status, and infrastructure / Yoseph Bar-Cohen -- 1.1. Introduction -- 1.2. Biological muscles -- 1.3. Historical review and currently available active polymers -- 1.4. Polymers with controllable properties or shape -- 1.5. Electroactive polymers (EAP) -- 1.6. The EAP roadmap, need for an established EAP technology -- Infrastructure -- 1.7. Potential -- 1.8. Acknowledgments -- 1.9. References
- Topic 2. Natural muscles -- Chapter 2. Natural muscle as a biological system / Gerald H. Pollack, Felix A. Blyakhman, Frederick B. Reitz, Olga V. Yakovenko, and Dwayne L. Dunaway -- 2.1. Conceptual background -- 2.2. Structural considerations -- 2.3. Does contraction involve a phase transition? -- 2.4. Molecular basis of the phase transition -- 2.5. Lessons from the natural muscle system that may be useful for the design of polymer actuators -- 2.6. References -- Chapter 3. Metrics of natural muscle function / Robert J. Full and Kenneth Meijer -- 3.1. Caution about copying and comparisons -- 3.2. Common characterizations, partial picture -- 3.3. Work-loop method reveals diverse roles of muscle function during rhythmic activity -- 3.4. Direct comparisons of muscle with human-made actuators -- 3.5. Future reciprocal Interdisciplinary collaborations -- 3.6. Acknowledgments -- 3.7. References
- Topic 3. EAP materials -- Topic 3.1. Electric EAP -- Chapter 4. Electric EAP / Qiming Zhang, Cheng Huang, Feng Xia, and Ji Su -- 4.1. Introduction -- 4.2. General terminology of electromechanical effects in electric EAP -- 4.3. PVDF-based ferroelectric polymers -- 4.4. Ferroelectric odd-numbered polyamides (nylons) -- 4.5. Electrostriction -- 4.6. Field-induced strain due to Maxwell stress effect -- 4.7. High dielectric constant polymeric materials as actuator materials -- 4.8. Electrets -- 4.9. Liquid-crystal polymers -- 4.10. Acknowledgments -- 4.11. References
- Topic 3.2. Ionic EAP -- Chapter 5. Electroactive polymer gels / Paul Calvert -- 5.1. Introduction, the gel state -- 5.2. Physical gels -- 5.3. Chemical gels -- 5.4. Thermodynamic properties of gels -- 5.5. Transport properties of gels -- 5.6. Polyelectrolyte gels -- 5.7. Mechanical properties of gels -- 5.8. Chemical actuation of gels -- 5.9. Electrically actuated gels -- 5.10. Recent progress -- 5.11. Future directions -- 5.12. References -- Chapter 6. Ionomeric polymer-metal composites / Sia Nemat-Nasser and Chris W. Thomas -- 6.1. Introduction -- 6.2. Brief history of IPMC materials -- 6.3. Materials and manufacture -- 6.4. Properties and characterization -- 6.5. Actuation mechanism -- 6.6. Development of IPMC applications -- 6.7. Discussion: advantages/disadvantages -- 6.8. Acknowledgments -- 6.9. References -- Chapter 7. Conductive polymers / José-María Sansiñena and Virginia Olazábal -- 7.1. Brief history of conductive polymers -- 7.2. Applications of conductive polymers -- 7.3. Basic mechanism of CP actuators -- 7.4. Development of CP actuators -- 7.5. Advantages and disadvantages of CP actuators -- 7.6. Acknowledgments -- 7.7. References -- Chapter 8. Carbon nanotube actuators: synthesis, properties, and performance / Geoffrey M. Spinks, Gordon G. Wallace, Ray H. Baughman, and Liming Dai -- 8.1. Introduction -- 8.2. Nanotube synthesis -- 8.3. Characterization of carbon nanotubes -- 8.4. Macroscopic nanotube assemblies: mats and fibers -- 8.5. Mechanical properties of carbon nanotubes -- 8.6. Mechanism of nanotube actuation -- 8.7. Experimental studies of carbon nanotube actuators -- 8.8. Conclusions and future developments -- 8.9. References
- Topic 3.3. Molecular EAP -- Chapter 9. Molecular scale electroactive polymers / Michael J. Marsella -- 9.1. Introduction -- 9.2. Intrinsic properties and macroscale translation -- 9.3. Stimulus-induced conformational changes within the single molecule -- 9.4. Final comments -- 9.5. References
- Topic 4. Modeling electroactive polymers -- Chapter 10. Computational chemistry / Kristopher E. Wise -- 10.1. Introduction -- 10.2. Overview of computational methods -- 10.3. Quantum mechanical methods -- 10.4. Classical force field simulations -- 10.5. Mesoscale simulations -- 10.6. References -- Chapter 11. Modeling and analysis of chemistry and electromechanics / Thomas Wallmersperger, Bernd Kröplin, and Rainer W. Gülch -- 11.1. Introduction --11.2. Chemical stimulation -- 11.3. Electrical stimulation -- 11.4. Conclusion -- 11.5. References -- Chapter 12. Electromechanical models for optimal design and effective behavior of electroactive polymers / Kaushik Bhattacharya, Jiangyu Li, and Yu Xiao -- 12.1. Introduction -- 12.2. Introduction to finite elasticity -- 12.3. Optimal design of electrostatic actuators -- 12.4. Models of ionomer actuators -- 12.5. Reduced models -- 12.6. Conclusion -- 12.7. Acknowledgment -- 12.8. References -- Chapter 13. Modeling IPMC for design of actuation mechanisms / Satoshi Tadokoro, Masashi Konyo, and Keisuke Oguro -- 13.1. Models and CAE tools for design of IPMC mechanisms -- 13.2. A physicochemical model considering six phenomena -- 13.3. Gray-box macroscopic model for mechanical and control design -- 13.4. Simulation demonstration by models -- 13.5. Applications of the model -- 13.6. References
- Topic 5. Processing and fabrication of EAPs -- Chapter 14. Processing and fabrication techniques / Yoseph Bar-Cohen, Virginia Olazábal, José-María Sansiñena, and Jeffrey Hinkley -- 14.1. Introduction -- 14.2. Synthesis and material processing -- 14.3. Fabrication and shaping techniques -- 14.4. Electroding techniques -- 14.5. System integration methods -- 14.6. EAP actuators -- 14.7. Concluding remarks -- 14.8. References
- Topic 6. Testing and characterization -- Chapter 15. Methods of testing and characterization / Stewart Sherrit, Xiaoqi Bao, and Yoseph Bar-Cohen -- 15.1. Introduction -- 15.2. Characterization of EAP with polarization-dependent strains -- 15.3. Characterization of ionic EAP with diffusion-dependent strain -- 15.4. Summary of test methods -- 15.5. Conclusion -- 15.6. Acknowledgments -- 15.7. References
- Topic 7. EAP actuators, devices, and mechanisms -- Chapter 16. Application of dielectric elastomer EAP actuators / Roy Kornbluh, Ron Pelrine, Qibing Pei, Marcus Rosenthal, Scott Stanford, Neville Bonwit, Richard Heydt, Harsha Prahlad, and Subramanian V. Shastri -- 16.1. Introduction -- 16.2. Dielectric elastomer EAP, background and basics -- 16.3. Actuator design issues -- 16.4. Operational considerations -- 16.5. Examples of dielectric elastomer EAP actuators and applications -- 16.6. Artificial muscles and applications to biologically inspired devices -- 16.7. General purpose linear actuators -- 16.8. Planar and other actuator configurations -- 16.9. Motors -- 16.10. Generators -- 16.11. Sensors -- 16.12. Summary and future developments -- 16.13. Acknowledgments -- 16.14. References
- Chapter 17. Biologically inspired robots / Brett Kennedy, Chris Melhuish, and Andrew Adamatzky -- 17.1. Introduction -- 17.2. Biologically inspired mechanisms and robots -- 17.3. Aspects of robotic design -- 17.4. Active polymer actuators in a traditional robotic system -- 17.5. Using rapid prototyping methods for integrated design -- 17.6. Evolutionary design algorithms (genetic algorithm design) -- 17.7. EAP actuators in highly integrated microrobot design -- 17.8. Solving the power problem toward energetic autonomy -- 17.9. The future of active polymer actuators and robots -- 17.10. References
- Chapter 18. Applications of EAP to the entertainment industry / David Hanson -- 18.1. Introduction -- 18.2. Entertainment and its shifting significance -- 18.3. Technical background to entertainment application of EAP -- 18.4. The craft of aesthetic biomimesis in entertainment -- 18.5. A recipe for using EAP in entertainment -- 18.6. Facial expression robot-practical test bed for EAP -- 18.7. Conclusion -- 18.8. Acknowledgment -- 18.9. References
- Chapter 19. Haptic interfaces using electrorheological fluids / Constantinos Mavroidis, Yoseph Bar-Cohen, and Mourad Bouzit -- 19.1. Introduction -- 19.2. Electrorheological fluids -- 19.3. Haptic interfaces and electrorheological fluids -- 19.4. MEMICA haptic glove -- 19.5. ECS element model derivation -- 19.6. Parametric analysis of the design of ECS elements -- 19.7. Experimental ECS system and results -- 19.8. Conclusions -- 19.9. Acknowledgments -- 19.10. References
- Chapter 20. Shape control of precision gossamer apertures / Christopher H.M. Jenkins -- 20.1. Introduction -- 20.2. Shape control of PGAs -- 20.3. Shape control methodologies involving electroactive polymers -- 20.4. Conclusions -- 20.5. Nomenclature -- 20.6. Acknowledgments -- 20.7. References
- Topic 8. Lessons learned, applications, and outlook -- Chapter 21. EAP applications, potential, and challenges / Yoseph Bar-Cohen -- 21.1. Introduction -- 21.2. Lesson learned using IPMC and dielectric EAP -- 21.3. Summary of existing EAP materials -- 21.4. Scalability issues and needs -- 21.5. Expected and evolving applications -- 21.6. EAP characterization -- 21.7. Platforms for demonstration of EAP -- 21.8. Future expectations -- 21.9. Acknowledgments -- 21.10. References -- Index
- Isbn
- 9780819481122
- Label
- Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges
- Title
- Electroactive polymer (EAP) actuators as artificial muscles
- Title remainder
- reality, potential, and challenges
- Statement of responsibility
- Yoseph Bar-Cohen, editor
- Subject
-
- Tissues
- Anatomy
- Artificial Organs
- Biological Science Disciplines
- Biomedical and Dental Materials
- Biophysics
- Conducting polymers
- Conducting polymers
- Electrophysiology
- Electrophysiology -- methods
- Equipment and Supplies
- HEALTH & FITNESS -- Holism
- HEALTH & FITNESS -- Reference
- MEDICAL -- Alternative Medicine
- MEDICAL -- Atlases
- MEDICAL -- Essays
- MEDICAL -- Family & General Practice
- MEDICAL -- Holistic Medicine
- MEDICAL -- Osteopathy
- Macromolecular Substances
- Manufactured Materials
- Muscles
- Muscles
- Muscles -- physiology
- Musculoskeletal System
- Natural Science Disciplines
- Physiology
- Polymers
- Polymers -- chemistry
- Polymers -- therapeutic use
- Polymers in medicine
- Polymers in medicine
- Surgical Equipment
- Technology, Industry, and Agriculture
- Language
- eng
- Summary
- In concept and execution, this book covers the field of EAP with careful attention to all its key aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. In this second edition the reader is brought current on promising advances in EAP that have occurred in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, carbon nanotube actuators, and more
- Action
- digitized
- Cataloging source
- KNOVL
- Dewey number
- 610/.28
- Illustrations
- illustrations
- Index
- index present
- Language note
- English
- LC call number
- R857.P6
- LC item number
- E43 2004eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- NLM call number
-
- 2004 I-408
- QT 37.5.P7
- NLM item number
- E38 2004
- http://library.link/vocab/relatedWorkOrContributorName
- Bar-Cohen, Yoseph
- Series statement
- SPIE Press monograph
- Series volume
- PM136
- http://library.link/vocab/subjectName
-
- Polymers in medicine
- Conducting polymers
- Muscles
- Polymers
- Polymers
- Biophysics
- Tissues
- Biomedical and Dental Materials
- Musculoskeletal System
- Physiology
- Surgical Equipment
- Macromolecular Substances
- Muscles
- Polymers
- Electrophysiology
- Equipment and Supplies
- Biological Science Disciplines
- Anatomy
- Manufactured Materials
- Natural Science Disciplines
- Technology, Industry, and Agriculture
- Artificial Organs
- Electrophysiology
- Muscles
- HEALTH & FITNESS
- HEALTH & FITNESS
- MEDICAL
- MEDICAL
- MEDICAL
- MEDICAL
- MEDICAL
- MEDICAL
- Conducting polymers
- Muscles
- Polymers in medicine
- Label
- Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Topic 1. Introduction -- Chapter 1. EAP history, current status, and infrastructure / Yoseph Bar-Cohen -- 1.1. Introduction -- 1.2. Biological muscles -- 1.3. Historical review and currently available active polymers -- 1.4. Polymers with controllable properties or shape -- 1.5. Electroactive polymers (EAP) -- 1.6. The EAP roadmap, need for an established EAP technology -- Infrastructure -- 1.7. Potential -- 1.8. Acknowledgments -- 1.9. References
- Topic 2. Natural muscles -- Chapter 2. Natural muscle as a biological system / Gerald H. Pollack, Felix A. Blyakhman, Frederick B. Reitz, Olga V. Yakovenko, and Dwayne L. Dunaway -- 2.1. Conceptual background -- 2.2. Structural considerations -- 2.3. Does contraction involve a phase transition? -- 2.4. Molecular basis of the phase transition -- 2.5. Lessons from the natural muscle system that may be useful for the design of polymer actuators -- 2.6. References -- Chapter 3. Metrics of natural muscle function / Robert J. Full and Kenneth Meijer -- 3.1. Caution about copying and comparisons -- 3.2. Common characterizations, partial picture -- 3.3. Work-loop method reveals diverse roles of muscle function during rhythmic activity -- 3.4. Direct comparisons of muscle with human-made actuators -- 3.5. Future reciprocal Interdisciplinary collaborations -- 3.6. Acknowledgments -- 3.7. References
- Topic 3. EAP materials -- Topic 3.1. Electric EAP -- Chapter 4. Electric EAP / Qiming Zhang, Cheng Huang, Feng Xia, and Ji Su -- 4.1. Introduction -- 4.2. General terminology of electromechanical effects in electric EAP -- 4.3. PVDF-based ferroelectric polymers -- 4.4. Ferroelectric odd-numbered polyamides (nylons) -- 4.5. Electrostriction -- 4.6. Field-induced strain due to Maxwell stress effect -- 4.7. High dielectric constant polymeric materials as actuator materials -- 4.8. Electrets -- 4.9. Liquid-crystal polymers -- 4.10. Acknowledgments -- 4.11. References
- Topic 3.2. Ionic EAP -- Chapter 5. Electroactive polymer gels / Paul Calvert -- 5.1. Introduction, the gel state -- 5.2. Physical gels -- 5.3. Chemical gels -- 5.4. Thermodynamic properties of gels -- 5.5. Transport properties of gels -- 5.6. Polyelectrolyte gels -- 5.7. Mechanical properties of gels -- 5.8. Chemical actuation of gels -- 5.9. Electrically actuated gels -- 5.10. Recent progress -- 5.11. Future directions -- 5.12. References -- Chapter 6. Ionomeric polymer-metal composites / Sia Nemat-Nasser and Chris W. Thomas -- 6.1. Introduction -- 6.2. Brief history of IPMC materials -- 6.3. Materials and manufacture -- 6.4. Properties and characterization -- 6.5. Actuation mechanism -- 6.6. Development of IPMC applications -- 6.7. Discussion: advantages/disadvantages -- 6.8. Acknowledgments -- 6.9. References -- Chapter 7. Conductive polymers / José-María Sansiñena and Virginia Olazábal -- 7.1. Brief history of conductive polymers -- 7.2. Applications of conductive polymers -- 7.3. Basic mechanism of CP actuators -- 7.4. Development of CP actuators -- 7.5. Advantages and disadvantages of CP actuators -- 7.6. Acknowledgments -- 7.7. References -- Chapter 8. Carbon nanotube actuators: synthesis, properties, and performance / Geoffrey M. Spinks, Gordon G. Wallace, Ray H. Baughman, and Liming Dai -- 8.1. Introduction -- 8.2. Nanotube synthesis -- 8.3. Characterization of carbon nanotubes -- 8.4. Macroscopic nanotube assemblies: mats and fibers -- 8.5. Mechanical properties of carbon nanotubes -- 8.6. Mechanism of nanotube actuation -- 8.7. Experimental studies of carbon nanotube actuators -- 8.8. Conclusions and future developments -- 8.9. References
- Topic 3.3. Molecular EAP -- Chapter 9. Molecular scale electroactive polymers / Michael J. Marsella -- 9.1. Introduction -- 9.2. Intrinsic properties and macroscale translation -- 9.3. Stimulus-induced conformational changes within the single molecule -- 9.4. Final comments -- 9.5. References
- Topic 4. Modeling electroactive polymers -- Chapter 10. Computational chemistry / Kristopher E. Wise -- 10.1. Introduction -- 10.2. Overview of computational methods -- 10.3. Quantum mechanical methods -- 10.4. Classical force field simulations -- 10.5. Mesoscale simulations -- 10.6. References -- Chapter 11. Modeling and analysis of chemistry and electromechanics / Thomas Wallmersperger, Bernd Kröplin, and Rainer W. Gülch -- 11.1. Introduction --11.2. Chemical stimulation -- 11.3. Electrical stimulation -- 11.4. Conclusion -- 11.5. References -- Chapter 12. Electromechanical models for optimal design and effective behavior of electroactive polymers / Kaushik Bhattacharya, Jiangyu Li, and Yu Xiao -- 12.1. Introduction -- 12.2. Introduction to finite elasticity -- 12.3. Optimal design of electrostatic actuators -- 12.4. Models of ionomer actuators -- 12.5. Reduced models -- 12.6. Conclusion -- 12.7. Acknowledgment -- 12.8. References -- Chapter 13. Modeling IPMC for design of actuation mechanisms / Satoshi Tadokoro, Masashi Konyo, and Keisuke Oguro -- 13.1. Models and CAE tools for design of IPMC mechanisms -- 13.2. A physicochemical model considering six phenomena -- 13.3. Gray-box macroscopic model for mechanical and control design -- 13.4. Simulation demonstration by models -- 13.5. Applications of the model -- 13.6. References
- Topic 5. Processing and fabrication of EAPs -- Chapter 14. Processing and fabrication techniques / Yoseph Bar-Cohen, Virginia Olazábal, José-María Sansiñena, and Jeffrey Hinkley -- 14.1. Introduction -- 14.2. Synthesis and material processing -- 14.3. Fabrication and shaping techniques -- 14.4. Electroding techniques -- 14.5. System integration methods -- 14.6. EAP actuators -- 14.7. Concluding remarks -- 14.8. References
- Topic 6. Testing and characterization -- Chapter 15. Methods of testing and characterization / Stewart Sherrit, Xiaoqi Bao, and Yoseph Bar-Cohen -- 15.1. Introduction -- 15.2. Characterization of EAP with polarization-dependent strains -- 15.3. Characterization of ionic EAP with diffusion-dependent strain -- 15.4. Summary of test methods -- 15.5. Conclusion -- 15.6. Acknowledgments -- 15.7. References
- Topic 7. EAP actuators, devices, and mechanisms -- Chapter 16. Application of dielectric elastomer EAP actuators / Roy Kornbluh, Ron Pelrine, Qibing Pei, Marcus Rosenthal, Scott Stanford, Neville Bonwit, Richard Heydt, Harsha Prahlad, and Subramanian V. Shastri -- 16.1. Introduction -- 16.2. Dielectric elastomer EAP, background and basics -- 16.3. Actuator design issues -- 16.4. Operational considerations -- 16.5. Examples of dielectric elastomer EAP actuators and applications -- 16.6. Artificial muscles and applications to biologically inspired devices -- 16.7. General purpose linear actuators -- 16.8. Planar and other actuator configurations -- 16.9. Motors -- 16.10. Generators -- 16.11. Sensors -- 16.12. Summary and future developments -- 16.13. Acknowledgments -- 16.14. References
- Chapter 17. Biologically inspired robots / Brett Kennedy, Chris Melhuish, and Andrew Adamatzky -- 17.1. Introduction -- 17.2. Biologically inspired mechanisms and robots -- 17.3. Aspects of robotic design -- 17.4. Active polymer actuators in a traditional robotic system -- 17.5. Using rapid prototyping methods for integrated design -- 17.6. Evolutionary design algorithms (genetic algorithm design) -- 17.7. EAP actuators in highly integrated microrobot design -- 17.8. Solving the power problem toward energetic autonomy -- 17.9. The future of active polymer actuators and robots -- 17.10. References
- Chapter 18. Applications of EAP to the entertainment industry / David Hanson -- 18.1. Introduction -- 18.2. Entertainment and its shifting significance -- 18.3. Technical background to entertainment application of EAP -- 18.4. The craft of aesthetic biomimesis in entertainment -- 18.5. A recipe for using EAP in entertainment -- 18.6. Facial expression robot-practical test bed for EAP -- 18.7. Conclusion -- 18.8. Acknowledgment -- 18.9. References
- Chapter 19. Haptic interfaces using electrorheological fluids / Constantinos Mavroidis, Yoseph Bar-Cohen, and Mourad Bouzit -- 19.1. Introduction -- 19.2. Electrorheological fluids -- 19.3. Haptic interfaces and electrorheological fluids -- 19.4. MEMICA haptic glove -- 19.5. ECS element model derivation -- 19.6. Parametric analysis of the design of ECS elements -- 19.7. Experimental ECS system and results -- 19.8. Conclusions -- 19.9. Acknowledgments -- 19.10. References
- Chapter 20. Shape control of precision gossamer apertures / Christopher H.M. Jenkins -- 20.1. Introduction -- 20.2. Shape control of PGAs -- 20.3. Shape control methodologies involving electroactive polymers -- 20.4. Conclusions -- 20.5. Nomenclature -- 20.6. Acknowledgments -- 20.7. References
- Topic 8. Lessons learned, applications, and outlook -- Chapter 21. EAP applications, potential, and challenges / Yoseph Bar-Cohen -- 21.1. Introduction -- 21.2. Lesson learned using IPMC and dielectric EAP -- 21.3. Summary of existing EAP materials -- 21.4. Scalability issues and needs -- 21.5. Expected and evolving applications -- 21.6. EAP characterization -- 21.7. Platforms for demonstration of EAP -- 21.8. Future expectations -- 21.9. Acknowledgments -- 21.10. References -- Index
- Control code
- 697175340
- Dimensions
- unknown
- Edition
- 2nd ed.
- Extent
- 1 online resource (xvii, 765 pages)
- Form of item
- online
- Isbn
- 9780819481122
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1117/3.547465
- Other physical details
- illustrations
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
- System control number
- (OCoLC)697175340
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
- Label
- Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Topic 1. Introduction -- Chapter 1. EAP history, current status, and infrastructure / Yoseph Bar-Cohen -- 1.1. Introduction -- 1.2. Biological muscles -- 1.3. Historical review and currently available active polymers -- 1.4. Polymers with controllable properties or shape -- 1.5. Electroactive polymers (EAP) -- 1.6. The EAP roadmap, need for an established EAP technology -- Infrastructure -- 1.7. Potential -- 1.8. Acknowledgments -- 1.9. References
- Topic 2. Natural muscles -- Chapter 2. Natural muscle as a biological system / Gerald H. Pollack, Felix A. Blyakhman, Frederick B. Reitz, Olga V. Yakovenko, and Dwayne L. Dunaway -- 2.1. Conceptual background -- 2.2. Structural considerations -- 2.3. Does contraction involve a phase transition? -- 2.4. Molecular basis of the phase transition -- 2.5. Lessons from the natural muscle system that may be useful for the design of polymer actuators -- 2.6. References -- Chapter 3. Metrics of natural muscle function / Robert J. Full and Kenneth Meijer -- 3.1. Caution about copying and comparisons -- 3.2. Common characterizations, partial picture -- 3.3. Work-loop method reveals diverse roles of muscle function during rhythmic activity -- 3.4. Direct comparisons of muscle with human-made actuators -- 3.5. Future reciprocal Interdisciplinary collaborations -- 3.6. Acknowledgments -- 3.7. References
- Topic 3. EAP materials -- Topic 3.1. Electric EAP -- Chapter 4. Electric EAP / Qiming Zhang, Cheng Huang, Feng Xia, and Ji Su -- 4.1. Introduction -- 4.2. General terminology of electromechanical effects in electric EAP -- 4.3. PVDF-based ferroelectric polymers -- 4.4. Ferroelectric odd-numbered polyamides (nylons) -- 4.5. Electrostriction -- 4.6. Field-induced strain due to Maxwell stress effect -- 4.7. High dielectric constant polymeric materials as actuator materials -- 4.8. Electrets -- 4.9. Liquid-crystal polymers -- 4.10. Acknowledgments -- 4.11. References
- Topic 3.2. Ionic EAP -- Chapter 5. Electroactive polymer gels / Paul Calvert -- 5.1. Introduction, the gel state -- 5.2. Physical gels -- 5.3. Chemical gels -- 5.4. Thermodynamic properties of gels -- 5.5. Transport properties of gels -- 5.6. Polyelectrolyte gels -- 5.7. Mechanical properties of gels -- 5.8. Chemical actuation of gels -- 5.9. Electrically actuated gels -- 5.10. Recent progress -- 5.11. Future directions -- 5.12. References -- Chapter 6. Ionomeric polymer-metal composites / Sia Nemat-Nasser and Chris W. Thomas -- 6.1. Introduction -- 6.2. Brief history of IPMC materials -- 6.3. Materials and manufacture -- 6.4. Properties and characterization -- 6.5. Actuation mechanism -- 6.6. Development of IPMC applications -- 6.7. Discussion: advantages/disadvantages -- 6.8. Acknowledgments -- 6.9. References -- Chapter 7. Conductive polymers / José-María Sansiñena and Virginia Olazábal -- 7.1. Brief history of conductive polymers -- 7.2. Applications of conductive polymers -- 7.3. Basic mechanism of CP actuators -- 7.4. Development of CP actuators -- 7.5. Advantages and disadvantages of CP actuators -- 7.6. Acknowledgments -- 7.7. References -- Chapter 8. Carbon nanotube actuators: synthesis, properties, and performance / Geoffrey M. Spinks, Gordon G. Wallace, Ray H. Baughman, and Liming Dai -- 8.1. Introduction -- 8.2. Nanotube synthesis -- 8.3. Characterization of carbon nanotubes -- 8.4. Macroscopic nanotube assemblies: mats and fibers -- 8.5. Mechanical properties of carbon nanotubes -- 8.6. Mechanism of nanotube actuation -- 8.7. Experimental studies of carbon nanotube actuators -- 8.8. Conclusions and future developments -- 8.9. References
- Topic 3.3. Molecular EAP -- Chapter 9. Molecular scale electroactive polymers / Michael J. Marsella -- 9.1. Introduction -- 9.2. Intrinsic properties and macroscale translation -- 9.3. Stimulus-induced conformational changes within the single molecule -- 9.4. Final comments -- 9.5. References
- Topic 4. Modeling electroactive polymers -- Chapter 10. Computational chemistry / Kristopher E. Wise -- 10.1. Introduction -- 10.2. Overview of computational methods -- 10.3. Quantum mechanical methods -- 10.4. Classical force field simulations -- 10.5. Mesoscale simulations -- 10.6. References -- Chapter 11. Modeling and analysis of chemistry and electromechanics / Thomas Wallmersperger, Bernd Kröplin, and Rainer W. Gülch -- 11.1. Introduction --11.2. Chemical stimulation -- 11.3. Electrical stimulation -- 11.4. Conclusion -- 11.5. References -- Chapter 12. Electromechanical models for optimal design and effective behavior of electroactive polymers / Kaushik Bhattacharya, Jiangyu Li, and Yu Xiao -- 12.1. Introduction -- 12.2. Introduction to finite elasticity -- 12.3. Optimal design of electrostatic actuators -- 12.4. Models of ionomer actuators -- 12.5. Reduced models -- 12.6. Conclusion -- 12.7. Acknowledgment -- 12.8. References -- Chapter 13. Modeling IPMC for design of actuation mechanisms / Satoshi Tadokoro, Masashi Konyo, and Keisuke Oguro -- 13.1. Models and CAE tools for design of IPMC mechanisms -- 13.2. A physicochemical model considering six phenomena -- 13.3. Gray-box macroscopic model for mechanical and control design -- 13.4. Simulation demonstration by models -- 13.5. Applications of the model -- 13.6. References
- Topic 5. Processing and fabrication of EAPs -- Chapter 14. Processing and fabrication techniques / Yoseph Bar-Cohen, Virginia Olazábal, José-María Sansiñena, and Jeffrey Hinkley -- 14.1. Introduction -- 14.2. Synthesis and material processing -- 14.3. Fabrication and shaping techniques -- 14.4. Electroding techniques -- 14.5. System integration methods -- 14.6. EAP actuators -- 14.7. Concluding remarks -- 14.8. References
- Topic 6. Testing and characterization -- Chapter 15. Methods of testing and characterization / Stewart Sherrit, Xiaoqi Bao, and Yoseph Bar-Cohen -- 15.1. Introduction -- 15.2. Characterization of EAP with polarization-dependent strains -- 15.3. Characterization of ionic EAP with diffusion-dependent strain -- 15.4. Summary of test methods -- 15.5. Conclusion -- 15.6. Acknowledgments -- 15.7. References
- Topic 7. EAP actuators, devices, and mechanisms -- Chapter 16. Application of dielectric elastomer EAP actuators / Roy Kornbluh, Ron Pelrine, Qibing Pei, Marcus Rosenthal, Scott Stanford, Neville Bonwit, Richard Heydt, Harsha Prahlad, and Subramanian V. Shastri -- 16.1. Introduction -- 16.2. Dielectric elastomer EAP, background and basics -- 16.3. Actuator design issues -- 16.4. Operational considerations -- 16.5. Examples of dielectric elastomer EAP actuators and applications -- 16.6. Artificial muscles and applications to biologically inspired devices -- 16.7. General purpose linear actuators -- 16.8. Planar and other actuator configurations -- 16.9. Motors -- 16.10. Generators -- 16.11. Sensors -- 16.12. Summary and future developments -- 16.13. Acknowledgments -- 16.14. References
- Chapter 17. Biologically inspired robots / Brett Kennedy, Chris Melhuish, and Andrew Adamatzky -- 17.1. Introduction -- 17.2. Biologically inspired mechanisms and robots -- 17.3. Aspects of robotic design -- 17.4. Active polymer actuators in a traditional robotic system -- 17.5. Using rapid prototyping methods for integrated design -- 17.6. Evolutionary design algorithms (genetic algorithm design) -- 17.7. EAP actuators in highly integrated microrobot design -- 17.8. Solving the power problem toward energetic autonomy -- 17.9. The future of active polymer actuators and robots -- 17.10. References
- Chapter 18. Applications of EAP to the entertainment industry / David Hanson -- 18.1. Introduction -- 18.2. Entertainment and its shifting significance -- 18.3. Technical background to entertainment application of EAP -- 18.4. The craft of aesthetic biomimesis in entertainment -- 18.5. A recipe for using EAP in entertainment -- 18.6. Facial expression robot-practical test bed for EAP -- 18.7. Conclusion -- 18.8. Acknowledgment -- 18.9. References
- Chapter 19. Haptic interfaces using electrorheological fluids / Constantinos Mavroidis, Yoseph Bar-Cohen, and Mourad Bouzit -- 19.1. Introduction -- 19.2. Electrorheological fluids -- 19.3. Haptic interfaces and electrorheological fluids -- 19.4. MEMICA haptic glove -- 19.5. ECS element model derivation -- 19.6. Parametric analysis of the design of ECS elements -- 19.7. Experimental ECS system and results -- 19.8. Conclusions -- 19.9. Acknowledgments -- 19.10. References
- Chapter 20. Shape control of precision gossamer apertures / Christopher H.M. Jenkins -- 20.1. Introduction -- 20.2. Shape control of PGAs -- 20.3. Shape control methodologies involving electroactive polymers -- 20.4. Conclusions -- 20.5. Nomenclature -- 20.6. Acknowledgments -- 20.7. References
- Topic 8. Lessons learned, applications, and outlook -- Chapter 21. EAP applications, potential, and challenges / Yoseph Bar-Cohen -- 21.1. Introduction -- 21.2. Lesson learned using IPMC and dielectric EAP -- 21.3. Summary of existing EAP materials -- 21.4. Scalability issues and needs -- 21.5. Expected and evolving applications -- 21.6. EAP characterization -- 21.7. Platforms for demonstration of EAP -- 21.8. Future expectations -- 21.9. Acknowledgments -- 21.10. References -- Index
- Control code
- 697175340
- Dimensions
- unknown
- Edition
- 2nd ed.
- Extent
- 1 online resource (xvii, 765 pages)
- Form of item
- online
- Isbn
- 9780819481122
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other control number
- 10.1117/3.547465
- Other physical details
- illustrations
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
- System control number
- (OCoLC)697175340
- System details
- Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Subject
- Tissues
- Anatomy
- Artificial Organs
- Biological Science Disciplines
- Biomedical and Dental Materials
- Biophysics
- Conducting polymers
- Conducting polymers
- Electrophysiology
- Electrophysiology -- methods
- Equipment and Supplies
- HEALTH & FITNESS -- Holism
- HEALTH & FITNESS -- Reference
- MEDICAL -- Alternative Medicine
- MEDICAL -- Atlases
- MEDICAL -- Essays
- MEDICAL -- Family & General Practice
- MEDICAL -- Holistic Medicine
- MEDICAL -- Osteopathy
- Macromolecular Substances
- Manufactured Materials
- Muscles
- Muscles
- Muscles -- physiology
- Musculoskeletal System
- Natural Science Disciplines
- Physiology
- Polymers
- Polymers -- chemistry
- Polymers -- therapeutic use
- Polymers in medicine
- Polymers in medicine
- Surgical Equipment
- Technology, Industry, and Agriculture
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Electroactive-polymer-EAP-actuators-as/GwdPuXbBpGM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Electroactive-polymer-EAP-actuators-as/GwdPuXbBpGM/">Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Electroactive-polymer-EAP-actuators-as/GwdPuXbBpGM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Electroactive-polymer-EAP-actuators-as/GwdPuXbBpGM/">Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, Yoseph Bar-Cohen, editor</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>