The Resource Electron optics simulation for designing carbon nanotube based field emission X-ray source, by Shabana Sultana

Electron optics simulation for designing carbon nanotube based field emission X-ray source, by Shabana Sultana

Label
Electron optics simulation for designing carbon nanotube based field emission X-ray source
Title
Electron optics simulation for designing carbon nanotube based field emission X-ray source
Statement of responsibility
by Shabana Sultana
Creator
Subject
Summary
In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging
Cataloging source
UMR
http://library.link/vocab/creatorName
Sultana, Shabana
http://library.link/vocab/subjectName
  • Electron optics
  • Carbon nanotubes
  • X-ray optics
Label
Electron optics simulation for designing carbon nanotube based field emission X-ray source, by Shabana Sultana
Instantiates
Publication
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Dimensions
22 cm
Extent
xxiii, 133 pages
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
color illustrations
Label
Electron optics simulation for designing carbon nanotube based field emission X-ray source, by Shabana Sultana
Publication
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Dimensions
22 cm
Extent
xxiii, 133 pages
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
color illustrations

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...