The Resource Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn
Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn
Resource Information
The item Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (82 pages)
- Contents
-
- TABLE OF CONTENTS -- 1. INTRODUCTION AND BASIC DEFINITIONS -- Definition of half-ray curve and real curve -- Structure Theorem for Half-ray Curves -- Embedding Theorem for Half-ray Curves -- Definition of K[sub(+)], K_, and singular sets -- Remark 1.1 -- 2. STRUCTURE THEOREMS -- Structure Theorem for K[sub(+)] and K_ -- Structure Theorem for Real Curves -- Corollary 2.1 -- 3. PARAMETERIZATION -- Parameterization Theorem -- 4. SOME EXAMPLES OF REAL CURVES -- Figure 1 -- ""Moby Dick"" -- Figure 2 (i) and Figure 2 (ii) -- Figure 3 -- ""Coffee-percolator"" -- Figure 4 -- ""Upside-down-elephant""
- Figure 5 -- ""Badly-cracked-egg"" -- Figure 6 -- ""Fry-pan-on-a-grill"" -- Figure 7 -- ""Spider-on-a-thread"" -- 5. EMBEDDING -- Embedding Theorem for Real Curves -- Definition of noose-like chain -- Definition of property y -- Definition of (<U+0065>, <U+006e>)-admissible link with center x[sub(1)] -- Definition of ""admissible"" noose-like chain -- Definition of admissible component of S, A(S) -- Remark 5.1 -- Definition of standard embedding of in the plane -- Lemma 5.6 -- Non-embeddability Theorem -- 6. MORE ABOUT EMBEDDINGS OF REAL CURVES -- Definition of standard embedding of M in the plane
- Planar Embedding Theorem for Real Curves -- Definition of admissible pattern with respect to N[sub(1)] beyond u -- Toroidal Embedding Theorem -- Two-manifold Embedding Theorem -- Problem 6.1 -- Theorem on Weak Chainability of Planar Real Curves -- Problem 6.2 -- 7. THE MORE GENERAL CONDITION OF LOCAL COMPACTNESS -- Theorem 7.2 -- REFERENCES
- Isbn
- 9780821899236
- Label
- Embeddability and structure properties of real curves
- Title
- Embeddability and structure properties of real curves
- Statement of responsibility
- by Sam B. Nadler, Jr. and J. Quinn
- Language
- eng
- Cataloging source
- E7B
- http://library.link/vocab/creatorName
- Nadler, Sam B
- Dewey number
-
- 510/.8 s
- 514/.32
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA611.28
- LC item number
- .N33 1972eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Quinn, Joseph
- Series statement
- Memoirs of the American Mathematical Society
- Series volume
- number 125
- http://library.link/vocab/subjectName
-
- Metric spaces
- Continuity
- Manifolds (Mathematics)
- Curves
- Topological imbeddings
- Continuity
- Curves
- Manifolds (Mathematics)
- Metric spaces
- Topological imbeddings
- Label
- Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn
- Bibliography note
- Includes bibliographical references (page 74)
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- TABLE OF CONTENTS -- 1. INTRODUCTION AND BASIC DEFINITIONS -- Definition of half-ray curve and real curve -- Structure Theorem for Half-ray Curves -- Embedding Theorem for Half-ray Curves -- Definition of K[sub(+)], K_, and singular sets -- Remark 1.1 -- 2. STRUCTURE THEOREMS -- Structure Theorem for K[sub(+)] and K_ -- Structure Theorem for Real Curves -- Corollary 2.1 -- 3. PARAMETERIZATION -- Parameterization Theorem -- 4. SOME EXAMPLES OF REAL CURVES -- Figure 1 -- ""Moby Dick"" -- Figure 2 (i) and Figure 2 (ii) -- Figure 3 -- ""Coffee-percolator"" -- Figure 4 -- ""Upside-down-elephant""
- Figure 5 -- ""Badly-cracked-egg"" -- Figure 6 -- ""Fry-pan-on-a-grill"" -- Figure 7 -- ""Spider-on-a-thread"" -- 5. EMBEDDING -- Embedding Theorem for Real Curves -- Definition of noose-like chain -- Definition of property y -- Definition of (<U+0065>, <U+006e>)-admissible link with center x[sub(1)] -- Definition of ""admissible"" noose-like chain -- Definition of admissible component of S, A(S) -- Remark 5.1 -- Definition of standard embedding of in the plane -- Lemma 5.6 -- Non-embeddability Theorem -- 6. MORE ABOUT EMBEDDINGS OF REAL CURVES -- Definition of standard embedding of M in the plane
- Planar Embedding Theorem for Real Curves -- Definition of admissible pattern with respect to N[sub(1)] beyond u -- Toroidal Embedding Theorem -- Two-manifold Embedding Theorem -- Problem 6.1 -- Theorem on Weak Chainability of Planar Real Curves -- Problem 6.2 -- 7. THE MORE GENERAL CONDITION OF LOCAL COMPACTNESS -- Theorem 7.2 -- REFERENCES
- Control code
- 884584180
- Dimensions
- unknown
- Extent
- 1 online resource (82 pages)
- Form of item
- online
- Isbn
- 9780821899236
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Specific material designation
- remote
- System control number
- (OCoLC)884584180
- Label
- Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn
- Bibliography note
- Includes bibliographical references (page 74)
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- TABLE OF CONTENTS -- 1. INTRODUCTION AND BASIC DEFINITIONS -- Definition of half-ray curve and real curve -- Structure Theorem for Half-ray Curves -- Embedding Theorem for Half-ray Curves -- Definition of K[sub(+)], K_, and singular sets -- Remark 1.1 -- 2. STRUCTURE THEOREMS -- Structure Theorem for K[sub(+)] and K_ -- Structure Theorem for Real Curves -- Corollary 2.1 -- 3. PARAMETERIZATION -- Parameterization Theorem -- 4. SOME EXAMPLES OF REAL CURVES -- Figure 1 -- ""Moby Dick"" -- Figure 2 (i) and Figure 2 (ii) -- Figure 3 -- ""Coffee-percolator"" -- Figure 4 -- ""Upside-down-elephant""
- Figure 5 -- ""Badly-cracked-egg"" -- Figure 6 -- ""Fry-pan-on-a-grill"" -- Figure 7 -- ""Spider-on-a-thread"" -- 5. EMBEDDING -- Embedding Theorem for Real Curves -- Definition of noose-like chain -- Definition of property y -- Definition of (<U+0065>, <U+006e>)-admissible link with center x[sub(1)] -- Definition of ""admissible"" noose-like chain -- Definition of admissible component of S, A(S) -- Remark 5.1 -- Definition of standard embedding of in the plane -- Lemma 5.6 -- Non-embeddability Theorem -- 6. MORE ABOUT EMBEDDINGS OF REAL CURVES -- Definition of standard embedding of M in the plane
- Planar Embedding Theorem for Real Curves -- Definition of admissible pattern with respect to N[sub(1)] beyond u -- Toroidal Embedding Theorem -- Two-manifold Embedding Theorem -- Problem 6.1 -- Theorem on Weak Chainability of Planar Real Curves -- Problem 6.2 -- 7. THE MORE GENERAL CONDITION OF LOCAL COMPACTNESS -- Theorem 7.2 -- REFERENCES
- Control code
- 884584180
- Dimensions
- unknown
- Extent
- 1 online resource (82 pages)
- Form of item
- online
- Isbn
- 9780821899236
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Specific material designation
- remote
- System control number
- (OCoLC)884584180
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Embeddability-and-structure-properties-of-real/8vBart2cDko/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Embeddability-and-structure-properties-of-real/8vBart2cDko/">Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Embeddability-and-structure-properties-of-real/8vBart2cDko/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Embeddability-and-structure-properties-of-real/8vBart2cDko/">Embeddability and structure properties of real curves, by Sam B. Nadler, Jr. and J. Quinn</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>