Coverart for item
The Resource Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells, edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca

Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells, edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca

Label
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells
Title
Frontiers of surface-enhanced raman scattering
Title remainder
single-nanoparticles and single cells
Statement of responsibility
edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Contributor
Editor
Subject
Language
eng
Summary
A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience
Member of
Cataloging source
DLC
Dewey number
543/.57
Index
index present
LC call number
QC454.R36
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Ozaki, Y.
  • Kneipp, Katrin
  • Aroca, Ricardo
http://library.link/vocab/subjectName
  • Raman effect, Surface enhanced
  • Surfaces (Physics)
  • Raman spectroscopy
  • Spectrum analysis
  • SCIENCE
  • Raman effect, Surface enhanced
  • Raman spectroscopy
  • Spectrum analysis
  • Surfaces (Physics)
Label
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells, edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Instantiates
Publication
Copyright
Note
Includes index
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Calculation of Surface-Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method; 1.1 Introduction: Combined Quantum Mechanics/ Electrodynamics Methods; 1.2 Computational Details; 1.3 Summary of Model Systems; 1.4 Azimuthal Averaging; 1.5 SERS of Pyridine: Models G, A, B, S, and V; 1.6 Orientation Effects in SERS of Phthalocyanines; 1.7 Two Particle QM/ED Calculations; 1.8 Summary; Acknowledgment; References
  • Chapter 2 Non-resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates2.1 Introduction; 2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots; 2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non-resonant SERS Process; 2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy; 2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS; 2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation; 2.3.1 SERS Signal vs. Concentration of the Target Molecule
  • 2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot Spots2.4 Summary and Conclusions; References; Chapter 3 Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for Single-Molecule Raman Scattering; 3.1 Introduction; 3.2 Methodology; 3.3 Plasmon Mode Structure of Nanoparticle Clusters; 3.3.1 Dimers; 3.3.2 Trimers; 3.4 Effect of Plasmon Modes on SMSERS; 3.4.1 Effect of the Spectral Lineshape; 3.4.2 Effect of Multiple Normal Modes; 3.5 Conclusions; Acknowledgment; References
  • Chapter 4 Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS Fluctuation Based on the Mechanism4.1 Experimental Demonstration of the EM Mechanism of SERS; 4.1.1 Introduction; 4.1.2 Observations of the EM Mechanism in SERS Spectral Variations; 4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra; 4.1.4 Quantitative Evaluation of the EM Mechanism of SERS; 4.1.5 Summary; 4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism; 4.2.1 Introduction
  • 4.2.2 Intensity and Spectral Fluctuation in SERS and SEF4.2.3 Framework for Analysis of Fluctuation in SERS and SEF; 4.2.4 Analysis of Intensity Fluctuation in SERS and SEF; 4.2.5 Analysis of Spectral Fluctuation in SERS and SEF; 4.2.6 Summary; 4.3 Conclusion; Acknowledgments; References; Chapter 5 Single-Molecule Surface-Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces; 5.1 Introduction; 5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule Junction; 5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule Level
Control code
858914517
Extent
1 online resource
Form of item
online
Isbn
9781118703571
Lccn
2013038586
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
(OCoLC)858914517
Label
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells, edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Publication
Copyright
Note
Includes index
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Calculation of Surface-Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method; 1.1 Introduction: Combined Quantum Mechanics/ Electrodynamics Methods; 1.2 Computational Details; 1.3 Summary of Model Systems; 1.4 Azimuthal Averaging; 1.5 SERS of Pyridine: Models G, A, B, S, and V; 1.6 Orientation Effects in SERS of Phthalocyanines; 1.7 Two Particle QM/ED Calculations; 1.8 Summary; Acknowledgment; References
  • Chapter 2 Non-resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates2.1 Introduction; 2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots; 2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non-resonant SERS Process; 2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy; 2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS; 2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation; 2.3.1 SERS Signal vs. Concentration of the Target Molecule
  • 2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot Spots2.4 Summary and Conclusions; References; Chapter 3 Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for Single-Molecule Raman Scattering; 3.1 Introduction; 3.2 Methodology; 3.3 Plasmon Mode Structure of Nanoparticle Clusters; 3.3.1 Dimers; 3.3.2 Trimers; 3.4 Effect of Plasmon Modes on SMSERS; 3.4.1 Effect of the Spectral Lineshape; 3.4.2 Effect of Multiple Normal Modes; 3.5 Conclusions; Acknowledgment; References
  • Chapter 4 Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS Fluctuation Based on the Mechanism4.1 Experimental Demonstration of the EM Mechanism of SERS; 4.1.1 Introduction; 4.1.2 Observations of the EM Mechanism in SERS Spectral Variations; 4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra; 4.1.4 Quantitative Evaluation of the EM Mechanism of SERS; 4.1.5 Summary; 4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism; 4.2.1 Introduction
  • 4.2.2 Intensity and Spectral Fluctuation in SERS and SEF4.2.3 Framework for Analysis of Fluctuation in SERS and SEF; 4.2.4 Analysis of Intensity Fluctuation in SERS and SEF; 4.2.5 Analysis of Spectral Fluctuation in SERS and SEF; 4.2.6 Summary; 4.3 Conclusion; Acknowledgments; References; Chapter 5 Single-Molecule Surface-Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces; 5.1 Introduction; 5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule Junction; 5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule Level
Control code
858914517
Extent
1 online resource
Form of item
online
Isbn
9781118703571
Lccn
2013038586
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
(OCoLC)858914517

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...