The Resource Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin
Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin
Resource Information
The item Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (xi, 336 pages.):
- Contents
-
- Part 1. Hilbert schemes of points on surfaces
- Part 2. Hilbert schemes and infinite dimensional Lie algebras
- Part 3. Cohomology rings of Hilbert schemes of points
- Part 4. Equivariant cohomology of the Hilbert schemes of points
- Part 5. Gromov-Witten theory of the Hilbert schemes of points
- Isbn
- 9781470443894
- Label
- Hilbert schemes of points and infinite dimensional lie algebras
- Title
- Hilbert schemes of points and infinite dimensional lie algebras
- Statement of responsibility
- Zhenbo Qin
- Language
- eng
- Cataloging source
- NhCcYBP
- http://library.link/vocab/creatorName
- Qin, Zhenbo
- Dewey number
- 516.3/5
- Index
- index present
- Language note
- Text in English
- LC call number
- QA564
- LC item number
- .Q56 2018
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- ProQuest (Firm)
- Series statement
- Mathematical surveys and monographs
- Series volume
- volume 228
- http://library.link/vocab/subjectName
-
- Hilbert schemes
- Schemes (Algebraic geometry)
- Lie algebras
- Label
- Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin
- Bibliography note
- Includes bibliographical references (pages 325-334) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Part 1. Hilbert schemes of points on surfaces -- Part 2. Hilbert schemes and infinite dimensional Lie algebras -- Part 3. Cohomology rings of Hilbert schemes of points -- Part 4. Equivariant cohomology of the Hilbert schemes of points -- Part 5. Gromov-Witten theory of the Hilbert schemes of points
- Control code
- MSTDDA5346252
- Dimensions
- unknown
- Extent
- 1 online resource (xi, 336 pages.):
- Form of item
- online
- Isbn
- 9781470443894
- Isbn Type
- (electronic bk.)
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
- Label
- Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin
- Bibliography note
- Includes bibliographical references (pages 325-334) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Part 1. Hilbert schemes of points on surfaces -- Part 2. Hilbert schemes and infinite dimensional Lie algebras -- Part 3. Cohomology rings of Hilbert schemes of points -- Part 4. Equivariant cohomology of the Hilbert schemes of points -- Part 5. Gromov-Witten theory of the Hilbert schemes of points
- Control code
- MSTDDA5346252
- Dimensions
- unknown
- Extent
- 1 online resource (xi, 336 pages.):
- Form of item
- online
- Isbn
- 9781470443894
- Isbn Type
- (electronic bk.)
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Hilbert-schemes-of-points-and-infinite/UwRk91vnLYg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Hilbert-schemes-of-points-and-infinite/UwRk91vnLYg/">Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Hilbert-schemes-of-points-and-infinite/UwRk91vnLYg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Hilbert-schemes-of-points-and-infinite/UwRk91vnLYg/">Hilbert schemes of points and infinite dimensional lie algebras, Zhenbo Qin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>