The Resource Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)
Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)
Resource Information
The item Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- The authors develop a theory of THH and TC of Waldhausen categories and prove the analogues of Waldhausen's theorems for K-theory. They resolve the longstanding confusion about localization sequences in THH and TC, and establish a specialized dévissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding THH(ku), and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on A(*)
- Language
- eng
- Extent
- 1 online resource ( 112 p..):
- Note
- Description based upon print version of record
- Contents
-
- Cover -- Title page -- Introduction -- Chapter 1. Review of , , and -- 1.1. Review of spectral categories -- 1.2. Review of the construction of , , and -- 1.3. Review of the invariance properties of -- 1.4. The Dennis-Waldhausen Morita Argument -- Chapter 2. and of simplicially enriched Waldhausen categories -- 2.1. Simplicially enriched Waldhausen categories -- 2.2. Spectral categories associated to simplicially enriched Waldhausen categories -- 2.3. The \Sdot and Moore nerve constructions -- 2.4. The Moore \Spdot construction
- 2.5. , , and the cyclotomic trace -- Chapter 3. -theory theorems in and -- 3.1. The Additivity Theorem -- 3.2. The Cofiber Theorem -- 3.3. The Localization Theorem -- 3.4. The Sphere Theorem -- 3.5. Proof of the Sphere Theorem -- Chapter 4. Localization sequences for and -- 4.1. The localization sequence for of a discrete valuation ring -- 4.2. The localization sequence for ( ) and related ring spectra -- 4.3. Proof of the Dévissage Theorem -- Chapter 5. Generalization to Waldhausen categories with factorization -- 5.1. Weakly exact functors
- 5.2. Embedding in simplicially tensored Waldhausen categories -- 5.3. Spectral categories and Waldhausen categories -- Bibliography -- Index -- Back Cover
- Isbn
- 9781470461409
- Label
- Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories
- Title
- Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories
- Language
- eng
- Summary
- The authors develop a theory of THH and TC of Waldhausen categories and prove the analogues of Waldhausen's theorems for K-theory. They resolve the longstanding confusion about localization sequences in THH and TC, and establish a specialized dévissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding THH(ku), and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on A(*)
- Cataloging source
- NhCcYBP
- http://library.link/vocab/creatorName
- Blumberg, Andrew J
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/relatedWorkOrContributorName
-
- Mandell, Michael A
- ProQuest (Firm)
- Series statement
- Memoirs of the American Mathematical Society Ser.
- Series volume
- v.265
- Label
- Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)
- Note
- Description based upon print version of record
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Cover -- Title page -- Introduction -- Chapter 1. Review of , , and -- 1.1. Review of spectral categories -- 1.2. Review of the construction of , , and -- 1.3. Review of the invariance properties of -- 1.4. The Dennis-Waldhausen Morita Argument -- Chapter 2. and of simplicially enriched Waldhausen categories -- 2.1. Simplicially enriched Waldhausen categories -- 2.2. Spectral categories associated to simplicially enriched Waldhausen categories -- 2.3. The \Sdot and Moore nerve constructions -- 2.4. The Moore \Spdot construction
- 2.5. , , and the cyclotomic trace -- Chapter 3. -theory theorems in and -- 3.1. The Additivity Theorem -- 3.2. The Cofiber Theorem -- 3.3. The Localization Theorem -- 3.4. The Sphere Theorem -- 3.5. Proof of the Sphere Theorem -- Chapter 4. Localization sequences for and -- 4.1. The localization sequence for of a discrete valuation ring -- 4.2. The localization sequence for ( ) and related ring spectra -- 4.3. Proof of the Dévissage Theorem -- Chapter 5. Generalization to Waldhausen categories with factorization -- 5.1. Weakly exact functors
- 5.2. Embedding in simplicially tensored Waldhausen categories -- 5.3. Spectral categories and Waldhausen categories -- Bibliography -- Index -- Back Cover
- Control code
- MSTDDA6229929
- Dimensions
- unknown
- Extent
- 1 online resource ( 112 p..):
- Form of item
- online
- Isbn
- 9781470461409
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
- Label
- Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)
- Note
- Description based upon print version of record
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Cover -- Title page -- Introduction -- Chapter 1. Review of , , and -- 1.1. Review of spectral categories -- 1.2. Review of the construction of , , and -- 1.3. Review of the invariance properties of -- 1.4. The Dennis-Waldhausen Morita Argument -- Chapter 2. and of simplicially enriched Waldhausen categories -- 2.1. Simplicially enriched Waldhausen categories -- 2.2. Spectral categories associated to simplicially enriched Waldhausen categories -- 2.3. The \Sdot and Moore nerve constructions -- 2.4. The Moore \Spdot construction
- 2.5. , , and the cyclotomic trace -- Chapter 3. -theory theorems in and -- 3.1. The Additivity Theorem -- 3.2. The Cofiber Theorem -- 3.3. The Localization Theorem -- 3.4. The Sphere Theorem -- 3.5. Proof of the Sphere Theorem -- Chapter 4. Localization sequences for and -- 4.1. The localization sequence for of a discrete valuation ring -- 4.2. The localization sequence for ( ) and related ring spectra -- 4.3. Proof of the Dévissage Theorem -- Chapter 5. Generalization to Waldhausen categories with factorization -- 5.1. Weakly exact functors
- 5.2. Embedding in simplicially tensored Waldhausen categories -- 5.3. Spectral categories and Waldhausen categories -- Bibliography -- Index -- Back Cover
- Control code
- MSTDDA6229929
- Dimensions
- unknown
- Extent
- 1 online resource ( 112 p..):
- Form of item
- online
- Isbn
- 9781470461409
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Reproduction note
- Electronic reproduction.
- Specific material designation
- remote
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Localization-for-THHku-and-the-Topological/4IF_DFSr4SE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Localization-for-THHku-and-the-Topological/4IF_DFSr4SE/">Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Localization-for-THHku-and-the-Topological/4IF_DFSr4SE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Localization-for-THHku-and-the-Topological/4IF_DFSr4SE/">Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>