The Resource Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak
Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak
Resource Information
The item Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance
- Language
- eng
- Extent
- 1 online resource (210 pages)
- Contents
-
- Preface -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Proteins and their subcellular locations -- 1.2 Why computationally predict protein subcellular localization? -- 1.2.1 Significance of the subcellular localization of proteins -- 1.2.2 Conventional wet-lab techniques -- 1.2.3 Computational prediction of protein subcellular localization -- 1.3 Organization of this book -- 2 Overview of subcellular localization prediction -- 2.1 Sequence-based methods -- 2.1.1 Composition-based methods -- 2.1.2 Sorting signal-based methods -- 2.1.3 Homology-based methods -- 2.2 Knowledge-based methods -- 2.2.1 GO-term extraction -- 2.2.2 GO-vector construction -- 2.3 Limitations of existing methods -- 2.3.1 Limitations of sequence-based methods -- 2.3.2 Limitations of knowledge-based methods -- 3 Legitimacy of using gene ontology information -- 3.1 Direct table lookup? -- 3.1.1 Table lookup procedure for single-label prediction -- 3.1.2 Table-lookup procedure for multi-label prediction -- 3.1.3 Problems of table lookup -- 3.2 Using only cellular component GO terms? -- 3.3 Equivalent to homologous transfer? -- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods
- 5.2.2 Problem transformation methods -- 5.2.3 Multi-label classification in bioinformatics -- 5.3 mGOASVM: A predictor for both single- and multi-location proteins -- 5.3.1 Feature extraction -- 5.3.2 Multi-label multiclass SVM classification -- 5.4 AD-SVM: An adaptive decision multi-label predictor -- 5.4.1 Multi-label SVM scoring -- 5.4.2 Adaptive decision for SVM (AD-SVM) -- 5.4.3 Analysis of AD-SVM -- 5.5 mPLR-Loc: A multi-label predictor based on penalized logistic regression -- 5.5.1 Single-label penalized logistic regression -- 5.5.2 Multi-label penalized logistic regression -- 5.5.3 Adaptive decision for LR (mPLR-Loc) -- 5.6 Summary -- 6 Mining deeper on GO for protein subcellular localization -- 6.1 Related work -- 6.2 SS-Loc: Using semantic similarity over GO -- 6.2.1 Semantic similarity measures -- 6.2.2 SS vector construction -- 6.3 HybridGO-Loc: Hybridizing GO frequency and semantic similarity features -- 6.3.1 Hybridization of two GO features -- 6.3.2 Multi-label multiclass SVM classification -- 6.4 Summary -- 7 Ensemble random projection for large-scale predictions -- 7.1 Random projection -- 7.2 RP-SVM: A multi-label classifier with ensemble random projection -- 7.2.1 Ensemble multi-label classifier -- 7.2.2 Multi-label classification -- 7.3 R3P-Loc: A compact predictor based on ridge regression and ensemble random projection -- 7.3.1 Limitation of using current databases -- 7.3.2 Creating compact databases -- 7.3.3 Single-label ridge regression -- 7.3.4 Multi-label ridge regression -- 7.4 Summary -- 8 Experimental setup -- 8.1 Prediction of single-label proteins -- 8.1.1 Datasets construction -- 8.1.2 Performance metrics -- 8.2 Prediction of multi-label proteins -- 8.2.1 Dataset construction -- 8.2.2 Datasets analysis -- 8.2.3 Performance metrics -- 8.3 Statistical evaluation methods -- 8.4 Summary
- 9 Results and analysis -- 9.1 Performance of GOASVM -- 9.1.1 Comparing GO vector construction methods -- 9.1.2 Performance of successive-search strategy -- 9.1.3 Comparing with methods based on other features -- 9.1.4 Comparing with state-of-the-art GO methods -- 9.1.5 GOASVM using old GOA databases -- 9.2 Performance of FusionSVM -- 9.2.1 Comparing GO vector construction and normalization methods -- 9.2.2 Performance of PairProSVM -- 9.2.3 Performance of FusionSVM -- 9.2.4 Effect of the fusion weights on the performance of FusionSVM -- 9.3 Performance of mGOASVM -- 9.3.1 Kernel selection and optimization -- 9.3.2 Term-frequency for mGOASVM -- 9.3.3 Multi-label properties for mGOASVM -- 9.3.4 Further analysis of mGOASVM -- 9.3.5 Comparing prediction results of novel proteins -- 9.4 Performance of AD-SVM -- 9.5 Performance of mPLR-Loc -- 9.5.1 Effect of adaptive decisions on mPLR-Loc -- 9.5.2 Effect of regularization on mPLR-Loc -- 9.6 Performance of HybridGO-Loc -- 9.6.1 Comparing different features -- 9.7 Performance of RP-SVM -- 9.7.1 Performance of ensemble random projection -- 9.7.2 Comparison with other dimension-reduction methods -- 9.7.3 Performance of single random-projection -- 9.7.4 Effect of dimensions and ensemble size -- 9.8 Performance of R3P-Loc -- 9.8.1 Performance on the compact databases -- 9.8.2 Effect of dimensions and ensemble size -- 9.8.3 Performance of ensemble random projection -- 9.9 Comprehensive comparison of proposed predictors -- 9.9.1 Comparison of benchmark datasets -- 9.9.2 Comparison of novel datasets -- 9.10 Summary -- 10 Properties of the proposed predictors -- 10.1 Noise data in the GOA Database -- 10.2 Analysis of single-label predictors -- 10.2.1 GOASVM vs FusionSVM -- 10.2.2 Can GOASVM be combined with PairProSVM? -- 10.3 Advantages of mGOASVM -- 10.3.1 GO-vector construction
- 10.3.2 GO subspace selection -- 10.3.3 Capability of handling multi-label problems -- 10.4 Analysis for HybridGO-Loc -- 10.4.1 Semantic similarity measures -- 10.4.2 GO-frequency features vs SS features -- 10.4.3 Bias analysis -- 10.5 Analysis for RP-SVM -- 10.5.1 Legitimacy of using RP -- 10.5.2 Ensemble random projection for robust performance -- 10.6 Comparing the proposed multi-label predictors -- 10.7 Summary -- 11 Conclusions and future directions -- 11.1 Conclusions -- 11.2 Future directions -- A Webservers for protein subcellular localization -- A.1 GOASVM webserver -- A.2 mGOASVM webserver -- A.3 HybridGO-Loc webserver -- A.4 mPLR-Loc webserver -- B Support vector machines -- B.1 Binary SVM classification -- B.2 One-vs-rest SVM classification -- C Proof of no bias in LOOCV -- D Derivatives for penalized logistic regression -- Bibliography -- Index
- Isbn
- 9781501501524
- Label
- Machine learning for protein subcellular localization prediction
- Title
- Machine learning for protein subcellular localization prediction
- Statement of responsibility
- Shibiao Wan, Man-Wai Mak
- Language
- eng
- Summary
- For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance
- Cataloging source
- E7B
- http://library.link/vocab/creatorName
- Wan, Shibiao
- Dewey number
- 572/.696
- Index
- index present
- Language note
- English
- LC call number
- QP551
- LC item number
- .W36 2015eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- NLM call number
- QU 55
- http://library.link/vocab/relatedWorkOrContributorName
- Mak, M. W.
- http://library.link/vocab/subjectName
-
- Proteins
- Machine learning
- Probabilities
- Carrier Proteins
- Artificial Intelligence
- Probability
- Technology & Engineering / Signals & Signal Processing
- Machine learning
- Probabilities
- Label
- Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Preface -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Proteins and their subcellular locations -- 1.2 Why computationally predict protein subcellular localization? -- 1.2.1 Significance of the subcellular localization of proteins -- 1.2.2 Conventional wet-lab techniques -- 1.2.3 Computational prediction of protein subcellular localization -- 1.3 Organization of this book -- 2 Overview of subcellular localization prediction -- 2.1 Sequence-based methods -- 2.1.1 Composition-based methods -- 2.1.2 Sorting signal-based methods -- 2.1.3 Homology-based methods -- 2.2 Knowledge-based methods -- 2.2.1 GO-term extraction -- 2.2.2 GO-vector construction -- 2.3 Limitations of existing methods -- 2.3.1 Limitations of sequence-based methods -- 2.3.2 Limitations of knowledge-based methods -- 3 Legitimacy of using gene ontology information -- 3.1 Direct table lookup? -- 3.1.1 Table lookup procedure for single-label prediction -- 3.1.2 Table-lookup procedure for multi-label prediction -- 3.1.3 Problems of table lookup -- 3.2 Using only cellular component GO terms? -- 3.3 Equivalent to homologous transfer? -- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods
- 5.2.2 Problem transformation methods -- 5.2.3 Multi-label classification in bioinformatics -- 5.3 mGOASVM: A predictor for both single- and multi-location proteins -- 5.3.1 Feature extraction -- 5.3.2 Multi-label multiclass SVM classification -- 5.4 AD-SVM: An adaptive decision multi-label predictor -- 5.4.1 Multi-label SVM scoring -- 5.4.2 Adaptive decision for SVM (AD-SVM) -- 5.4.3 Analysis of AD-SVM -- 5.5 mPLR-Loc: A multi-label predictor based on penalized logistic regression -- 5.5.1 Single-label penalized logistic regression -- 5.5.2 Multi-label penalized logistic regression -- 5.5.3 Adaptive decision for LR (mPLR-Loc) -- 5.6 Summary -- 6 Mining deeper on GO for protein subcellular localization -- 6.1 Related work -- 6.2 SS-Loc: Using semantic similarity over GO -- 6.2.1 Semantic similarity measures -- 6.2.2 SS vector construction -- 6.3 HybridGO-Loc: Hybridizing GO frequency and semantic similarity features -- 6.3.1 Hybridization of two GO features -- 6.3.2 Multi-label multiclass SVM classification -- 6.4 Summary -- 7 Ensemble random projection for large-scale predictions -- 7.1 Random projection -- 7.2 RP-SVM: A multi-label classifier with ensemble random projection -- 7.2.1 Ensemble multi-label classifier -- 7.2.2 Multi-label classification -- 7.3 R3P-Loc: A compact predictor based on ridge regression and ensemble random projection -- 7.3.1 Limitation of using current databases -- 7.3.2 Creating compact databases -- 7.3.3 Single-label ridge regression -- 7.3.4 Multi-label ridge regression -- 7.4 Summary -- 8 Experimental setup -- 8.1 Prediction of single-label proteins -- 8.1.1 Datasets construction -- 8.1.2 Performance metrics -- 8.2 Prediction of multi-label proteins -- 8.2.1 Dataset construction -- 8.2.2 Datasets analysis -- 8.2.3 Performance metrics -- 8.3 Statistical evaluation methods -- 8.4 Summary
- 9 Results and analysis -- 9.1 Performance of GOASVM -- 9.1.1 Comparing GO vector construction methods -- 9.1.2 Performance of successive-search strategy -- 9.1.3 Comparing with methods based on other features -- 9.1.4 Comparing with state-of-the-art GO methods -- 9.1.5 GOASVM using old GOA databases -- 9.2 Performance of FusionSVM -- 9.2.1 Comparing GO vector construction and normalization methods -- 9.2.2 Performance of PairProSVM -- 9.2.3 Performance of FusionSVM -- 9.2.4 Effect of the fusion weights on the performance of FusionSVM -- 9.3 Performance of mGOASVM -- 9.3.1 Kernel selection and optimization -- 9.3.2 Term-frequency for mGOASVM -- 9.3.3 Multi-label properties for mGOASVM -- 9.3.4 Further analysis of mGOASVM -- 9.3.5 Comparing prediction results of novel proteins -- 9.4 Performance of AD-SVM -- 9.5 Performance of mPLR-Loc -- 9.5.1 Effect of adaptive decisions on mPLR-Loc -- 9.5.2 Effect of regularization on mPLR-Loc -- 9.6 Performance of HybridGO-Loc -- 9.6.1 Comparing different features -- 9.7 Performance of RP-SVM -- 9.7.1 Performance of ensemble random projection -- 9.7.2 Comparison with other dimension-reduction methods -- 9.7.3 Performance of single random-projection -- 9.7.4 Effect of dimensions and ensemble size -- 9.8 Performance of R3P-Loc -- 9.8.1 Performance on the compact databases -- 9.8.2 Effect of dimensions and ensemble size -- 9.8.3 Performance of ensemble random projection -- 9.9 Comprehensive comparison of proposed predictors -- 9.9.1 Comparison of benchmark datasets -- 9.9.2 Comparison of novel datasets -- 9.10 Summary -- 10 Properties of the proposed predictors -- 10.1 Noise data in the GOA Database -- 10.2 Analysis of single-label predictors -- 10.2.1 GOASVM vs FusionSVM -- 10.2.2 Can GOASVM be combined with PairProSVM? -- 10.3 Advantages of mGOASVM -- 10.3.1 GO-vector construction
- 10.3.2 GO subspace selection -- 10.3.3 Capability of handling multi-label problems -- 10.4 Analysis for HybridGO-Loc -- 10.4.1 Semantic similarity measures -- 10.4.2 GO-frequency features vs SS features -- 10.4.3 Bias analysis -- 10.5 Analysis for RP-SVM -- 10.5.1 Legitimacy of using RP -- 10.5.2 Ensemble random projection for robust performance -- 10.6 Comparing the proposed multi-label predictors -- 10.7 Summary -- 11 Conclusions and future directions -- 11.1 Conclusions -- 11.2 Future directions -- A Webservers for protein subcellular localization -- A.1 GOASVM webserver -- A.2 mGOASVM webserver -- A.3 HybridGO-Loc webserver -- A.4 mPLR-Loc webserver -- B Support vector machines -- B.1 Binary SVM classification -- B.2 One-vs-rest SVM classification -- C Proof of no bias in LOOCV -- D Derivatives for penalized logistic regression -- Bibliography -- Index
- Control code
- 912323205
- Dimensions
- unknown
- Extent
- 1 online resource (210 pages)
- Form of item
- online
- Isbn
- 9781501501524
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- http://library.link/vocab/ext/overdrive/overdriveId
- 2326883343542755850
- Specific material designation
- remote
- System control number
- (OCoLC)912323205
- Label
- Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Preface -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Proteins and their subcellular locations -- 1.2 Why computationally predict protein subcellular localization? -- 1.2.1 Significance of the subcellular localization of proteins -- 1.2.2 Conventional wet-lab techniques -- 1.2.3 Computational prediction of protein subcellular localization -- 1.3 Organization of this book -- 2 Overview of subcellular localization prediction -- 2.1 Sequence-based methods -- 2.1.1 Composition-based methods -- 2.1.2 Sorting signal-based methods -- 2.1.3 Homology-based methods -- 2.2 Knowledge-based methods -- 2.2.1 GO-term extraction -- 2.2.2 GO-vector construction -- 2.3 Limitations of existing methods -- 2.3.1 Limitations of sequence-based methods -- 2.3.2 Limitations of knowledge-based methods -- 3 Legitimacy of using gene ontology information -- 3.1 Direct table lookup? -- 3.1.1 Table lookup procedure for single-label prediction -- 3.1.2 Table-lookup procedure for multi-label prediction -- 3.1.3 Problems of table lookup -- 3.2 Using only cellular component GO terms? -- 3.3 Equivalent to homologous transfer? -- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods
- 5.2.2 Problem transformation methods -- 5.2.3 Multi-label classification in bioinformatics -- 5.3 mGOASVM: A predictor for both single- and multi-location proteins -- 5.3.1 Feature extraction -- 5.3.2 Multi-label multiclass SVM classification -- 5.4 AD-SVM: An adaptive decision multi-label predictor -- 5.4.1 Multi-label SVM scoring -- 5.4.2 Adaptive decision for SVM (AD-SVM) -- 5.4.3 Analysis of AD-SVM -- 5.5 mPLR-Loc: A multi-label predictor based on penalized logistic regression -- 5.5.1 Single-label penalized logistic regression -- 5.5.2 Multi-label penalized logistic regression -- 5.5.3 Adaptive decision for LR (mPLR-Loc) -- 5.6 Summary -- 6 Mining deeper on GO for protein subcellular localization -- 6.1 Related work -- 6.2 SS-Loc: Using semantic similarity over GO -- 6.2.1 Semantic similarity measures -- 6.2.2 SS vector construction -- 6.3 HybridGO-Loc: Hybridizing GO frequency and semantic similarity features -- 6.3.1 Hybridization of two GO features -- 6.3.2 Multi-label multiclass SVM classification -- 6.4 Summary -- 7 Ensemble random projection for large-scale predictions -- 7.1 Random projection -- 7.2 RP-SVM: A multi-label classifier with ensemble random projection -- 7.2.1 Ensemble multi-label classifier -- 7.2.2 Multi-label classification -- 7.3 R3P-Loc: A compact predictor based on ridge regression and ensemble random projection -- 7.3.1 Limitation of using current databases -- 7.3.2 Creating compact databases -- 7.3.3 Single-label ridge regression -- 7.3.4 Multi-label ridge regression -- 7.4 Summary -- 8 Experimental setup -- 8.1 Prediction of single-label proteins -- 8.1.1 Datasets construction -- 8.1.2 Performance metrics -- 8.2 Prediction of multi-label proteins -- 8.2.1 Dataset construction -- 8.2.2 Datasets analysis -- 8.2.3 Performance metrics -- 8.3 Statistical evaluation methods -- 8.4 Summary
- 9 Results and analysis -- 9.1 Performance of GOASVM -- 9.1.1 Comparing GO vector construction methods -- 9.1.2 Performance of successive-search strategy -- 9.1.3 Comparing with methods based on other features -- 9.1.4 Comparing with state-of-the-art GO methods -- 9.1.5 GOASVM using old GOA databases -- 9.2 Performance of FusionSVM -- 9.2.1 Comparing GO vector construction and normalization methods -- 9.2.2 Performance of PairProSVM -- 9.2.3 Performance of FusionSVM -- 9.2.4 Effect of the fusion weights on the performance of FusionSVM -- 9.3 Performance of mGOASVM -- 9.3.1 Kernel selection and optimization -- 9.3.2 Term-frequency for mGOASVM -- 9.3.3 Multi-label properties for mGOASVM -- 9.3.4 Further analysis of mGOASVM -- 9.3.5 Comparing prediction results of novel proteins -- 9.4 Performance of AD-SVM -- 9.5 Performance of mPLR-Loc -- 9.5.1 Effect of adaptive decisions on mPLR-Loc -- 9.5.2 Effect of regularization on mPLR-Loc -- 9.6 Performance of HybridGO-Loc -- 9.6.1 Comparing different features -- 9.7 Performance of RP-SVM -- 9.7.1 Performance of ensemble random projection -- 9.7.2 Comparison with other dimension-reduction methods -- 9.7.3 Performance of single random-projection -- 9.7.4 Effect of dimensions and ensemble size -- 9.8 Performance of R3P-Loc -- 9.8.1 Performance on the compact databases -- 9.8.2 Effect of dimensions and ensemble size -- 9.8.3 Performance of ensemble random projection -- 9.9 Comprehensive comparison of proposed predictors -- 9.9.1 Comparison of benchmark datasets -- 9.9.2 Comparison of novel datasets -- 9.10 Summary -- 10 Properties of the proposed predictors -- 10.1 Noise data in the GOA Database -- 10.2 Analysis of single-label predictors -- 10.2.1 GOASVM vs FusionSVM -- 10.2.2 Can GOASVM be combined with PairProSVM? -- 10.3 Advantages of mGOASVM -- 10.3.1 GO-vector construction
- 10.3.2 GO subspace selection -- 10.3.3 Capability of handling multi-label problems -- 10.4 Analysis for HybridGO-Loc -- 10.4.1 Semantic similarity measures -- 10.4.2 GO-frequency features vs SS features -- 10.4.3 Bias analysis -- 10.5 Analysis for RP-SVM -- 10.5.1 Legitimacy of using RP -- 10.5.2 Ensemble random projection for robust performance -- 10.6 Comparing the proposed multi-label predictors -- 10.7 Summary -- 11 Conclusions and future directions -- 11.1 Conclusions -- 11.2 Future directions -- A Webservers for protein subcellular localization -- A.1 GOASVM webserver -- A.2 mGOASVM webserver -- A.3 HybridGO-Loc webserver -- A.4 mPLR-Loc webserver -- B Support vector machines -- B.1 Binary SVM classification -- B.2 One-vs-rest SVM classification -- C Proof of no bias in LOOCV -- D Derivatives for penalized logistic regression -- Bibliography -- Index
- Control code
- 912323205
- Dimensions
- unknown
- Extent
- 1 online resource (210 pages)
- Form of item
- online
- Isbn
- 9781501501524
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- http://library.link/vocab/ext/overdrive/overdriveId
- 2326883343542755850
- Specific material designation
- remote
- System control number
- (OCoLC)912323205
Subject
- Electronic books
- Machine learning
- Machine learning
- Probabilities -- Data processing
- Probabilities -- Data processing
- Proteins -- Physiological transport | Data processing
- Technology & Engineering / Signals & Signal Processing
- Probability
- Artificial Intelligence
- Carrier Proteins
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Machine-learning-for-protein-subcellular/mwdDypNWuvM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Machine-learning-for-protein-subcellular/mwdDypNWuvM/">Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Machine-learning-for-protein-subcellular/mwdDypNWuvM/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Machine-learning-for-protein-subcellular/mwdDypNWuvM/">Machine learning for protein subcellular localization prediction, Shibiao Wan, Man-Wai Mak</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>