The Resource Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen
Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen
Resource Information
The item Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- The object of this book is to show how visualization techniques may be employed to produce pictures that have interest for the creation, communication, and teaching of mathematics
- Language
- eng
- Extent
- 1 online resource (xv, 173 pages)
- Contents
-
- Sums of integers
- 1.3.
- Alternating sums of squares
- 1.4.
- Challenges
- 2.
- Representing numbers by lengths of segments
- 2.1.
- Inequalities among means
- 2.2.
- Introduction
- The mediant property
- 2.3.
- A Pythagorean inequality
- 2.4.
- Trigonometric functions
- 2.5.
- Numbers as function values
- 2.6.
- Challenges
- 3.
- pt. 1.
- Representing numbers by areas of plane figures
- 3.1.
- Sums of integers revisited
- 3.2.
- The sum of terms in arithmetic progression
- 3.3.
- Fibonacci numbers
- 3.4.
- Some inequalities
- 3.4.
- Visualizing mathematics by creating pictures
- Some inequalities
- 3.5.
- Sums of squares
- 3.6.
- Sums of cubes
- 3.7.
- Challenges
- 4.
- Representing numbers by volumes of objects
- 4.1.
- 1.
- From two dimensions to three
- 4.2.
- Sums of squares of integers revisited
- 4.3.
- Sums of triangular numbers
- 4.4.
- A double sum
- 4.5.
- Challenges
- Representing numbers by graphical elements
- 1.1.
- Sums of odd integers
- 1.2.
- 5.4.
- Challenges
- 6.
- Employing isometry
- 6.1.
- The Chou Pei Suan Ching proof of the Pythagorean theorem
- 6.2.
- A theorem of Thales
- 6.3.
- Leonardo da Vinci's proof of the Pythagorean theorem
- 5.
- 6.4.
- The Fermat point of a triangle
- 6.5.
- Viviani's theorem
- 6.6.
- Challenges
- 7.
- Employing similarity
- 7.1.
- Ptolemy's theorem
- Identifying key elements
- 7.2.
- The golden ratio in the regular pentagon
- 7.3.
- The Pythagorean theorem -- again
- 7.4.
- Area between sides and cevians of a triangle
- 7.5.
- Challenges
- 8.
- Area-preserving transformations
- 5.1.
- 8.1.
- Pappus and Pythagoras
- 8.2.
- Squaring polygons
- 8.3.
- Equal areas in a partition of a parallelogram
- 8.4.
- The Cauchy-Schwarz inequality
- 8.5.
- A theorem of Gaspard Monge
- On the angle bisectors of a convex quadrilateral
- 8.6.
- Challenges
- 5.2.
- Cyclic quadrilaterals with perpendicular diagonals
- 5.3.
- A property of the rectangular hyperbola
- 9.4.
- The spider and the fly
- 9.5.
- Challenges
- 10.
- Overlaying tiles
- 10.1.
- Pythagorean tilings
- 10.2.
- Cartesian tilings
- 9.
- 10.3.
- Quadrilateral tilings
- 10.4.
- Triangular tilings
- 10.5.
- Tiling with squares and parallelograms
- 10.6.
- Challenges
- 11.
- Playing with several copies
- Escaping from the plane
- 11.1.
- From Pythagoras to trigonometry
- 11.2.
- Sums of odd integers revisited
- 11.3
- Sums of squares again
- 11.4.
- The volume of a square pyramid
- 11.5.
- Challenges
- 9.1.
- 12.
- Sequential frames
- 12.1.
- The parallelogram law
- 12.2.
- An unknown angle
- 12.3.
- Determinants
- 12.4.
- Challenges
- Three circles and six tangents
- 13.
- Geometric dissections
- 13.1.
- Cutting with ingenuity
- 13.2.
- The "smart Alec" puzzle
- 13.3.
- The area of a regular dodecagon
- 13.4.
- Challenges
- 9.2.
- 14.
- Moving frames
- 14.1.
- Functional composition
- 14.2.
- The Lipschitz condition
- 14.3.
- Uniform continuity
- 14.4.
- Challenges
- FAir division of a cake
- 9.3.
- Inscribing the regular heptagon in a circle
- 15.4.
- Challenges
- 16.
- Introducing colors
- 16.1.
- Domino tilings
- 16.2.
- L-Tetromino tilings
- 16.3.
- Alternating sums of triangular numbers
- 15.
- 16.4.
- In space, four colors are not enough
- 16.5.
- Challenges
- 17.
- Visualization by inclusion
- 17.1.
- The genuine triangle inequality
- 17.2.
- The mean of the squares exceeds the square of the mean
- Iterative procedures
- 17.3.
- The arithmetic mean-geometric mean inequality for three numbers
- 17.4.
- Challenges
- 18.
- Ingenuity in 3 D
- 18.1.
- From 3D with love
- 18.2.
- Folding and cutting paper
- 15.1.
- 18.3.
- Unfolding polyhedra
- 18.4.
- Challenges
- 19.
- Using 3D models
- 19.1.
- Platonic secrets
- 19.2.
- The rhombic dodecahedron
- Geometric series
- 19.3.
- The Fermat point again
- 19.4.
- Challenges
- 20.
- Combining techniques
- 20.1.
- Heron's formula
- 20.2.
- The quadrilateral law
- 15.2.
- 20.3.
- Ptolemy's inequality
- 20.4.
- Another minimal path
- 20.5.
- Slicing cubes
- 20.6.
- Vertices, faces, and polyhedra
- 20.7.
- challenges
- Growing a figure iteratively
- 15.3.
- A curve without tangents
- Using soap bubbles
- Lighting results
- Mirror images
- Towards creativity
- pt. 3.
- Hints and solutions to the challenges
- References
- Index
- About the authors
- pt. 2.
- Visualization in the classroom
- Mathematical drawings : a short historical perspective
- On visual thinking
- Visualization in the classroom
- On the role of hands-on materials
- Everyday life objects as resources
- Making models of polyhedra
- Isbn
- 9781614441007
- Label
- Math made visual : creating images for understanding mathematics
- Title
- Math made visual
- Title remainder
- creating images for understanding mathematics
- Statement of responsibility
- Claudi Alsina and Roger B. Nelsen
- Subject
-
- Digital images
- Electronic book
- Electronic books
- MATHEMATICS -- General
- MATHEMATICS -- Study & Teaching
- Mathematics
- Mathematics -- Charts, diagrams, etc
- Mathematics -- Study and teaching (Higher)
- Mathematics -- Study and teaching (Higher)
- Mathematikunterricht
- Visualisierung
- Digital images
- Charts, diagrams, etc
- Language
- eng
- Summary
- The object of this book is to show how visualization techniques may be employed to produce pictures that have interest for the creation, communication, and teaching of mathematics
- Cataloging source
- N$T
- http://library.link/vocab/creatorName
- Alsina, Claudi
- Dewey number
- 510.71
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA19.C45
- LC item number
- A47 2006
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Nelsen, Roger B.
- Series statement
- Classroom resource materials
- http://library.link/vocab/subjectName
-
- Mathematics
- Mathematics
- Digital images
- MATHEMATICS
- MATHEMATICS
- Digital images
- Mathematics
- Mathematics
- Mathematikunterricht
- Visualisierung
- Label
- Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Sums of integers
- 1.3.
- Alternating sums of squares
- 1.4.
- Challenges
- 2.
- Representing numbers by lengths of segments
- 2.1.
- Inequalities among means
- 2.2.
- Introduction
- The mediant property
- 2.3.
- A Pythagorean inequality
- 2.4.
- Trigonometric functions
- 2.5.
- Numbers as function values
- 2.6.
- Challenges
- 3.
- pt. 1.
- Representing numbers by areas of plane figures
- 3.1.
- Sums of integers revisited
- 3.2.
- The sum of terms in arithmetic progression
- 3.3.
- Fibonacci numbers
- 3.4.
- Some inequalities
- 3.4.
- Visualizing mathematics by creating pictures
- Some inequalities
- 3.5.
- Sums of squares
- 3.6.
- Sums of cubes
- 3.7.
- Challenges
- 4.
- Representing numbers by volumes of objects
- 4.1.
- 1.
- From two dimensions to three
- 4.2.
- Sums of squares of integers revisited
- 4.3.
- Sums of triangular numbers
- 4.4.
- A double sum
- 4.5.
- Challenges
- Representing numbers by graphical elements
- 1.1.
- Sums of odd integers
- 1.2.
- 5.4.
- Challenges
- 6.
- Employing isometry
- 6.1.
- The Chou Pei Suan Ching proof of the Pythagorean theorem
- 6.2.
- A theorem of Thales
- 6.3.
- Leonardo da Vinci's proof of the Pythagorean theorem
- 5.
- 6.4.
- The Fermat point of a triangle
- 6.5.
- Viviani's theorem
- 6.6.
- Challenges
- 7.
- Employing similarity
- 7.1.
- Ptolemy's theorem
- Identifying key elements
- 7.2.
- The golden ratio in the regular pentagon
- 7.3.
- The Pythagorean theorem -- again
- 7.4.
- Area between sides and cevians of a triangle
- 7.5.
- Challenges
- 8.
- Area-preserving transformations
- 5.1.
- 8.1.
- Pappus and Pythagoras
- 8.2.
- Squaring polygons
- 8.3.
- Equal areas in a partition of a parallelogram
- 8.4.
- The Cauchy-Schwarz inequality
- 8.5.
- A theorem of Gaspard Monge
- On the angle bisectors of a convex quadrilateral
- 8.6.
- Challenges
- 5.2.
- Cyclic quadrilaterals with perpendicular diagonals
- 5.3.
- A property of the rectangular hyperbola
- 9.4.
- The spider and the fly
- 9.5.
- Challenges
- 10.
- Overlaying tiles
- 10.1.
- Pythagorean tilings
- 10.2.
- Cartesian tilings
- 9.
- 10.3.
- Quadrilateral tilings
- 10.4.
- Triangular tilings
- 10.5.
- Tiling with squares and parallelograms
- 10.6.
- Challenges
- 11.
- Playing with several copies
- Escaping from the plane
- 11.1.
- From Pythagoras to trigonometry
- 11.2.
- Sums of odd integers revisited
- 11.3
- Sums of squares again
- 11.4.
- The volume of a square pyramid
- 11.5.
- Challenges
- 9.1.
- 12.
- Sequential frames
- 12.1.
- The parallelogram law
- 12.2.
- An unknown angle
- 12.3.
- Determinants
- 12.4.
- Challenges
- Three circles and six tangents
- 13.
- Geometric dissections
- 13.1.
- Cutting with ingenuity
- 13.2.
- The "smart Alec" puzzle
- 13.3.
- The area of a regular dodecagon
- 13.4.
- Challenges
- 9.2.
- 14.
- Moving frames
- 14.1.
- Functional composition
- 14.2.
- The Lipschitz condition
- 14.3.
- Uniform continuity
- 14.4.
- Challenges
- FAir division of a cake
- 9.3.
- Inscribing the regular heptagon in a circle
- 15.4.
- Challenges
- 16.
- Introducing colors
- 16.1.
- Domino tilings
- 16.2.
- L-Tetromino tilings
- 16.3.
- Alternating sums of triangular numbers
- 15.
- 16.4.
- In space, four colors are not enough
- 16.5.
- Challenges
- 17.
- Visualization by inclusion
- 17.1.
- The genuine triangle inequality
- 17.2.
- The mean of the squares exceeds the square of the mean
- Iterative procedures
- 17.3.
- The arithmetic mean-geometric mean inequality for three numbers
- 17.4.
- Challenges
- 18.
- Ingenuity in 3 D
- 18.1.
- From 3D with love
- 18.2.
- Folding and cutting paper
- 15.1.
- 18.3.
- Unfolding polyhedra
- 18.4.
- Challenges
- 19.
- Using 3D models
- 19.1.
- Platonic secrets
- 19.2.
- The rhombic dodecahedron
- Geometric series
- 19.3.
- The Fermat point again
- 19.4.
- Challenges
- 20.
- Combining techniques
- 20.1.
- Heron's formula
- 20.2.
- The quadrilateral law
- 15.2.
- 20.3.
- Ptolemy's inequality
- 20.4.
- Another minimal path
- 20.5.
- Slicing cubes
- 20.6.
- Vertices, faces, and polyhedra
- 20.7.
- challenges
- Growing a figure iteratively
- 15.3.
- A curve without tangents
- Using soap bubbles
- Lighting results
- Mirror images
- Towards creativity
- pt. 3.
- Hints and solutions to the challenges
- References
- Index
- About the authors
- pt. 2.
- Visualization in the classroom
- Mathematical drawings : a short historical perspective
- On visual thinking
- Visualization in the classroom
- On the role of hands-on materials
- Everyday life objects as resources
- Making models of polyhedra
- Control code
- 794855553
- Dimensions
- unknown
- Extent
- 1 online resource (xv, 173 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9781614441007
- Lccn
- 2005937269
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- http://library.link/vocab/ext/overdrive/overdriveId
- 22573/ctt59h1f0
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)794855553
- Label
- Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Sums of integers
- 1.3.
- Alternating sums of squares
- 1.4.
- Challenges
- 2.
- Representing numbers by lengths of segments
- 2.1.
- Inequalities among means
- 2.2.
- Introduction
- The mediant property
- 2.3.
- A Pythagorean inequality
- 2.4.
- Trigonometric functions
- 2.5.
- Numbers as function values
- 2.6.
- Challenges
- 3.
- pt. 1.
- Representing numbers by areas of plane figures
- 3.1.
- Sums of integers revisited
- 3.2.
- The sum of terms in arithmetic progression
- 3.3.
- Fibonacci numbers
- 3.4.
- Some inequalities
- 3.4.
- Visualizing mathematics by creating pictures
- Some inequalities
- 3.5.
- Sums of squares
- 3.6.
- Sums of cubes
- 3.7.
- Challenges
- 4.
- Representing numbers by volumes of objects
- 4.1.
- 1.
- From two dimensions to three
- 4.2.
- Sums of squares of integers revisited
- 4.3.
- Sums of triangular numbers
- 4.4.
- A double sum
- 4.5.
- Challenges
- Representing numbers by graphical elements
- 1.1.
- Sums of odd integers
- 1.2.
- 5.4.
- Challenges
- 6.
- Employing isometry
- 6.1.
- The Chou Pei Suan Ching proof of the Pythagorean theorem
- 6.2.
- A theorem of Thales
- 6.3.
- Leonardo da Vinci's proof of the Pythagorean theorem
- 5.
- 6.4.
- The Fermat point of a triangle
- 6.5.
- Viviani's theorem
- 6.6.
- Challenges
- 7.
- Employing similarity
- 7.1.
- Ptolemy's theorem
- Identifying key elements
- 7.2.
- The golden ratio in the regular pentagon
- 7.3.
- The Pythagorean theorem -- again
- 7.4.
- Area between sides and cevians of a triangle
- 7.5.
- Challenges
- 8.
- Area-preserving transformations
- 5.1.
- 8.1.
- Pappus and Pythagoras
- 8.2.
- Squaring polygons
- 8.3.
- Equal areas in a partition of a parallelogram
- 8.4.
- The Cauchy-Schwarz inequality
- 8.5.
- A theorem of Gaspard Monge
- On the angle bisectors of a convex quadrilateral
- 8.6.
- Challenges
- 5.2.
- Cyclic quadrilaterals with perpendicular diagonals
- 5.3.
- A property of the rectangular hyperbola
- 9.4.
- The spider and the fly
- 9.5.
- Challenges
- 10.
- Overlaying tiles
- 10.1.
- Pythagorean tilings
- 10.2.
- Cartesian tilings
- 9.
- 10.3.
- Quadrilateral tilings
- 10.4.
- Triangular tilings
- 10.5.
- Tiling with squares and parallelograms
- 10.6.
- Challenges
- 11.
- Playing with several copies
- Escaping from the plane
- 11.1.
- From Pythagoras to trigonometry
- 11.2.
- Sums of odd integers revisited
- 11.3
- Sums of squares again
- 11.4.
- The volume of a square pyramid
- 11.5.
- Challenges
- 9.1.
- 12.
- Sequential frames
- 12.1.
- The parallelogram law
- 12.2.
- An unknown angle
- 12.3.
- Determinants
- 12.4.
- Challenges
- Three circles and six tangents
- 13.
- Geometric dissections
- 13.1.
- Cutting with ingenuity
- 13.2.
- The "smart Alec" puzzle
- 13.3.
- The area of a regular dodecagon
- 13.4.
- Challenges
- 9.2.
- 14.
- Moving frames
- 14.1.
- Functional composition
- 14.2.
- The Lipschitz condition
- 14.3.
- Uniform continuity
- 14.4.
- Challenges
- FAir division of a cake
- 9.3.
- Inscribing the regular heptagon in a circle
- 15.4.
- Challenges
- 16.
- Introducing colors
- 16.1.
- Domino tilings
- 16.2.
- L-Tetromino tilings
- 16.3.
- Alternating sums of triangular numbers
- 15.
- 16.4.
- In space, four colors are not enough
- 16.5.
- Challenges
- 17.
- Visualization by inclusion
- 17.1.
- The genuine triangle inequality
- 17.2.
- The mean of the squares exceeds the square of the mean
- Iterative procedures
- 17.3.
- The arithmetic mean-geometric mean inequality for three numbers
- 17.4.
- Challenges
- 18.
- Ingenuity in 3 D
- 18.1.
- From 3D with love
- 18.2.
- Folding and cutting paper
- 15.1.
- 18.3.
- Unfolding polyhedra
- 18.4.
- Challenges
- 19.
- Using 3D models
- 19.1.
- Platonic secrets
- 19.2.
- The rhombic dodecahedron
- Geometric series
- 19.3.
- The Fermat point again
- 19.4.
- Challenges
- 20.
- Combining techniques
- 20.1.
- Heron's formula
- 20.2.
- The quadrilateral law
- 15.2.
- 20.3.
- Ptolemy's inequality
- 20.4.
- Another minimal path
- 20.5.
- Slicing cubes
- 20.6.
- Vertices, faces, and polyhedra
- 20.7.
- challenges
- Growing a figure iteratively
- 15.3.
- A curve without tangents
- Using soap bubbles
- Lighting results
- Mirror images
- Towards creativity
- pt. 3.
- Hints and solutions to the challenges
- References
- Index
- About the authors
- pt. 2.
- Visualization in the classroom
- Mathematical drawings : a short historical perspective
- On visual thinking
- Visualization in the classroom
- On the role of hands-on materials
- Everyday life objects as resources
- Making models of polyhedra
- Control code
- 794855553
- Dimensions
- unknown
- Extent
- 1 online resource (xv, 173 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9781614441007
- Lccn
- 2005937269
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- http://library.link/vocab/ext/overdrive/overdriveId
- 22573/ctt59h1f0
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)794855553
Subject
- Digital images
- Electronic book
- Electronic books
- MATHEMATICS -- General
- MATHEMATICS -- Study & Teaching
- Mathematics
- Mathematics -- Charts, diagrams, etc
- Mathematics -- Study and teaching (Higher)
- Mathematics -- Study and teaching (Higher)
- Mathematikunterricht
- Visualisierung
- Digital images
- Charts, diagrams, etc
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Math-made-visual--creating-images-for/heClruTorwo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Math-made-visual--creating-images-for/heClruTorwo/">Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Math-made-visual--creating-images-for/heClruTorwo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Math-made-visual--creating-images-for/heClruTorwo/">Math made visual : creating images for understanding mathematics, Claudi Alsina and Roger B. Nelsen</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>