The Resource Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
Resource Information
The item Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated:How uncertain is my model? Is it truly valuable to support decision-making? What kind of decision can be truly supported and how can I handle residual uncertainty? How much refined should the mathematical description be, given the true data limitations? Could the uncertainty be reduced through more data, increased modeling investment or computational budget? Should it be red
- Language
- eng
- Extent
- 1 online resource (484 pages)
- Contents
-
- Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods; Contents; Preface; Acknowledgements; Introduction and reading guide; Notation; Acronyms and abbreviations; 1 Applications and practices of modelling, risk and uncertainty; 1.1 Protection against natural risk; 1.1.1 The popular 'initiator/frequency approach'; 1.1.2 Recent developments towards an 'extended frequency approach'; 1.2 Engineering design, safety and structural reliability analysis (SRA); 1.2.1 The domain of structural reliability
- 1.2.2 Deterministic safety margins and partial safety factors1.2.3 Probabilistic structural reliability analysis; 1.2.4 Links and differences with natural risk studies; 1.3 Industrial safety, system reliability and probabilistic risk assessment (PRA); 1.3.1 The context of systems analysis; 1.3.2 Links and differences with structural reliability analysis; 1.3.3 The case of elaborate PRA (multi-state, dynamic); 1.3.4 Integrated probabilistic risk assessment (IPRA); 1.4 Modelling under uncertainty in metrology, environmental/sanitary assessment and numerical analysis
- 1.4.1 Uncertainty and sensitivity analysis (UASA)1.4.2 Specificities in metrology/industrial quality control; 1.4.3 Specificities in environmental/health impact assessment; 1.4.4 Numerical code qualification (NCQ), calibration and data assimilation; 1.5 Forecast and time-based modelling in weather, operations research, economics or finance; 1.6 Conclusion: The scope for generic modelling under risk and uncertainty; 1.6.1 Similar and dissimilar features in modelling, risk and uncertainty studies; 1.6.2 Limitations and challenges motivating a unified framework; References
- 2 A generic modelling framework2.1 The system under uncertainty; 2.2 Decisional quantities and goals of modelling under risk and uncertainty; 2.2.1 The key concept of risk measure or quantity of interest; 2.2.2 Salient goals of risk/uncertainty studies and decision-making; 2.3 Modelling under uncertainty: Building separate system and uncertainty models; 2.3.1 The need to go beyond direct statistics; 2.3.2 Basic system models; 2.3.3 Building a direct uncertainty model on variable inputs; 2.3.4 Developing the underlying epistemic/aleatory structure; 2.3.5 Summary
- 2.4 Modelling under uncertainty -- the general case2.4.1 Phenomenological models under uncertainty and residual model error; 2.4.2 The model building process; 2.4.3 Combining system and uncertainty models into an integrated statistical estimation problem; 2.4.4 The combination of system and uncertainty models: A key information choice; 2.4.5 The predictive model combining system and uncertainty components; 2.5 Combining probabilistic and deterministic settings; 2.5.1 Preliminary comments about the interpretations of probabilistic uncertainty models
- Isbn
- 9781119969501
- Label
- Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
- Title
- Modelling Under Risk and Uncertainty
- Title remainder
- an Introduction to Statistical, Phenomenological and Computational Methods
- Subject
-
- BUSINESS & ECONOMICS -- Economics | Microeconomics
- Electronic books
- Industrial management -- Mathematical models
- Industrial management -- Mathematical models
- Risk management -- Mathematical models
- Uncertainty -- Mathematical models
- Uncertainty -- Mathematical models
- Risk management -- Mathematical models
- Language
- eng
- Summary
- Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated:How uncertain is my model? Is it truly valuable to support decision-making? What kind of decision can be truly supported and how can I handle residual uncertainty? How much refined should the mathematical description be, given the true data limitations? Could the uncertainty be reduced through more data, increased modeling investment or computational budget? Should it be red
- Cataloging source
- EBLCP
- http://library.link/vocab/creatorName
- De Rocquigny, Etienne
- Dewey number
- 338.5015195
- Index
- no index present
- LC call number
- HD30.25
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/subjectName
-
- Industrial management
- Uncertainty
- Risk management
- BUSINESS & ECONOMICS
- Industrial management
- Risk management
- Uncertainty
- Label
- Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods; Contents; Preface; Acknowledgements; Introduction and reading guide; Notation; Acronyms and abbreviations; 1 Applications and practices of modelling, risk and uncertainty; 1.1 Protection against natural risk; 1.1.1 The popular 'initiator/frequency approach'; 1.1.2 Recent developments towards an 'extended frequency approach'; 1.2 Engineering design, safety and structural reliability analysis (SRA); 1.2.1 The domain of structural reliability
- 1.2.2 Deterministic safety margins and partial safety factors1.2.3 Probabilistic structural reliability analysis; 1.2.4 Links and differences with natural risk studies; 1.3 Industrial safety, system reliability and probabilistic risk assessment (PRA); 1.3.1 The context of systems analysis; 1.3.2 Links and differences with structural reliability analysis; 1.3.3 The case of elaborate PRA (multi-state, dynamic); 1.3.4 Integrated probabilistic risk assessment (IPRA); 1.4 Modelling under uncertainty in metrology, environmental/sanitary assessment and numerical analysis
- 1.4.1 Uncertainty and sensitivity analysis (UASA)1.4.2 Specificities in metrology/industrial quality control; 1.4.3 Specificities in environmental/health impact assessment; 1.4.4 Numerical code qualification (NCQ), calibration and data assimilation; 1.5 Forecast and time-based modelling in weather, operations research, economics or finance; 1.6 Conclusion: The scope for generic modelling under risk and uncertainty; 1.6.1 Similar and dissimilar features in modelling, risk and uncertainty studies; 1.6.2 Limitations and challenges motivating a unified framework; References
- 2 A generic modelling framework2.1 The system under uncertainty; 2.2 Decisional quantities and goals of modelling under risk and uncertainty; 2.2.1 The key concept of risk measure or quantity of interest; 2.2.2 Salient goals of risk/uncertainty studies and decision-making; 2.3 Modelling under uncertainty: Building separate system and uncertainty models; 2.3.1 The need to go beyond direct statistics; 2.3.2 Basic system models; 2.3.3 Building a direct uncertainty model on variable inputs; 2.3.4 Developing the underlying epistemic/aleatory structure; 2.3.5 Summary
- 2.4 Modelling under uncertainty -- the general case2.4.1 Phenomenological models under uncertainty and residual model error; 2.4.2 The model building process; 2.4.3 Combining system and uncertainty models into an integrated statistical estimation problem; 2.4.4 The combination of system and uncertainty models: A key information choice; 2.4.5 The predictive model combining system and uncertainty components; 2.5 Combining probabilistic and deterministic settings; 2.5.1 Preliminary comments about the interpretations of probabilistic uncertainty models
- Control code
- 787843750
- Dimensions
- unknown
- Extent
- 1 online resource (484 pages)
- Form of item
- online
- Isbn
- 9781119969501
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Specific material designation
- remote
- System control number
- (OCoLC)787843750
- Label
- Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods; Contents; Preface; Acknowledgements; Introduction and reading guide; Notation; Acronyms and abbreviations; 1 Applications and practices of modelling, risk and uncertainty; 1.1 Protection against natural risk; 1.1.1 The popular 'initiator/frequency approach'; 1.1.2 Recent developments towards an 'extended frequency approach'; 1.2 Engineering design, safety and structural reliability analysis (SRA); 1.2.1 The domain of structural reliability
- 1.2.2 Deterministic safety margins and partial safety factors1.2.3 Probabilistic structural reliability analysis; 1.2.4 Links and differences with natural risk studies; 1.3 Industrial safety, system reliability and probabilistic risk assessment (PRA); 1.3.1 The context of systems analysis; 1.3.2 Links and differences with structural reliability analysis; 1.3.3 The case of elaborate PRA (multi-state, dynamic); 1.3.4 Integrated probabilistic risk assessment (IPRA); 1.4 Modelling under uncertainty in metrology, environmental/sanitary assessment and numerical analysis
- 1.4.1 Uncertainty and sensitivity analysis (UASA)1.4.2 Specificities in metrology/industrial quality control; 1.4.3 Specificities in environmental/health impact assessment; 1.4.4 Numerical code qualification (NCQ), calibration and data assimilation; 1.5 Forecast and time-based modelling in weather, operations research, economics or finance; 1.6 Conclusion: The scope for generic modelling under risk and uncertainty; 1.6.1 Similar and dissimilar features in modelling, risk and uncertainty studies; 1.6.2 Limitations and challenges motivating a unified framework; References
- 2 A generic modelling framework2.1 The system under uncertainty; 2.2 Decisional quantities and goals of modelling under risk and uncertainty; 2.2.1 The key concept of risk measure or quantity of interest; 2.2.2 Salient goals of risk/uncertainty studies and decision-making; 2.3 Modelling under uncertainty: Building separate system and uncertainty models; 2.3.1 The need to go beyond direct statistics; 2.3.2 Basic system models; 2.3.3 Building a direct uncertainty model on variable inputs; 2.3.4 Developing the underlying epistemic/aleatory structure; 2.3.5 Summary
- 2.4 Modelling under uncertainty -- the general case2.4.1 Phenomenological models under uncertainty and residual model error; 2.4.2 The model building process; 2.4.3 Combining system and uncertainty models into an integrated statistical estimation problem; 2.4.4 The combination of system and uncertainty models: A key information choice; 2.4.5 The predictive model combining system and uncertainty components; 2.5 Combining probabilistic and deterministic settings; 2.5.1 Preliminary comments about the interpretations of probabilistic uncertainty models
- Control code
- 787843750
- Dimensions
- unknown
- Extent
- 1 online resource (484 pages)
- Form of item
- online
- Isbn
- 9781119969501
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Specific material designation
- remote
- System control number
- (OCoLC)787843750
Subject
- BUSINESS & ECONOMICS -- Economics | Microeconomics
- Electronic books
- Industrial management -- Mathematical models
- Industrial management -- Mathematical models
- Risk management -- Mathematical models
- Uncertainty -- Mathematical models
- Uncertainty -- Mathematical models
- Risk management -- Mathematical models
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Modelling-Under-Risk-and-Uncertainty--an/_hWUQslDaDE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Modelling-Under-Risk-and-Uncertainty--an/_hWUQslDaDE/">Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Modelling-Under-Risk-and-Uncertainty--an/_hWUQslDaDE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Modelling-Under-Risk-and-Uncertainty--an/_hWUQslDaDE/">Modelling Under Risk and Uncertainty : an Introduction to Statistical, Phenomenological and Computational Methods</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>