Coverart for item
The Resource Natural and synthetic biomedical polymers, edited by Sangamesh Kumbar, Cato Laurencin, Meng Deng

Natural and synthetic biomedical polymers, edited by Sangamesh Kumbar, Cato Laurencin, Meng Deng

Label
Natural and synthetic biomedical polymers
Title
Natural and synthetic biomedical polymers
Statement of responsibility
edited by Sangamesh Kumbar, Cato Laurencin, Meng Deng
Contributor
Editor
Subject
Language
eng
Summary
"Polymer scientists have made an extensive research for the development of biodegradable polymers which could find enormous applications in the area of medical science. Today, various biopolymers have been prepared and utilized in different biomedical applications. Despite the apparent proliferation of biopolymers in medical science, the Science and Technology of biopolymers is still in its early stages of development. Tremendous opportunities exist and will continue to exist for the penetration of biopolymers in every facet of medical science through intensive Research and Development. Therefore, this chapter addresses different polymerization methods and techniques employed for the preparation of biopolymers. An emphasis is given to cover the general properties of biopolymers, synthetic protocols and their biomedical applications. In order to make the useful biomedical devices from the polymers to meet the demands of medical science, various processing techniques employed for the development of devices have been discussed. Further, perspectives in this field have been highlighted and at the end arrived at the conclusions. The relevant literature was collected from different sources including Google sites, books and reviews"--
Member of
Assigning source
Provided by publisher
Cataloging source
N$T
Dewey number
610.28
Index
index present
LC call number
TP248.65.P62
LC item number
N38 2014eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Kumbar, Sangamesh
  • Laurencin, Cato T.
  • Deng, Meng
http://library.link/vocab/subjectName
  • Biopolymers
  • Biodegradable plastics
  • Macromolecular Substances
  • Manufactured Materials
  • Specialty Uses of Chemicals
  • Chemical Actions and Uses
  • Technology, Industry, and Agriculture
  • Biopolymers
  • Biocompatible Materials
  • Polymers
  • Biomedical and Dental Materials
  • HEALTH & FITNESS
  • HEALTH & FITNESS
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • Biodegradable plastics
  • Biopolymers
Label
Natural and synthetic biomedical polymers, edited by Sangamesh Kumbar, Cato Laurencin, Meng Deng
Instantiates
Publication
Note
Machine generated contents note: Section 1. Synthesis and Characterization 1.1. Polymer Synthesis: the design and synthesis of important classes of polymeric biomaterials involving different monomers will be discussed. 1.2. Characterization of Polymeric Biomaterials: in vitro and in vivo characterization of advanced biomaterials, (cell and tissue interactions with polymeric biomaterials with various physico-chemical, mechanical properties, surface and degradation properties Section 2. Currently Used Materials 2.1. Proteins and poly(amino acids) including collagen, poly(amino acids), elastin and elastin-like polypeptides, albumin, and fibrin 2.2. Polysaccharides including hyaluronic acid, chondroitin sulfate, chitin and chitosan, and alginic acid 2.3. Poly(a-ester)s including polylactides, polyglycolide, poly(lactide-co-glycolide), polycaprolactone, and bacterial polyesters 2.4. Polyurethanes 2.5. Poly(ester amide) 2.6. Poly(ortho esters) 2.7. Polyanhydrides 2.8. Poly(propylene fumarate) 2.9. Polyphosphazenes 2.10. Pseudo poly(amino acid)s 2.11. Polyphosphoester 2.12. Polyacetals 2.13. Poly(ethylene glycol)-based biomaterials 2.14. Dendrimers 2.15. Elastomers Section 3. Biomedical Applications of Polymeric Biomaterials 3.1. Polymeric Biomaterials in Biomedical Implants 3.2. Polymeric Biomaterials in Drug Delivery 3.3. Polymeric Biomaterials in Tissue Engineering 3.4. Polymeric Biomaterials in Medical Diagnostics
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.9.
  • Polyhydroxybutyrate
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.10.
  • Polycyanoacrylates
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.11.
  • Polyvinylpyrrolidone
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.12.
  • Chitosan
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.13.
  • Gelatin
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.14.
  • Carrageenan
  • 1.2.1.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.15.
  • Hyaluronic Acid
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.16.
  • Xanthan Gum
  • Addition Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.17.
  • Acacia Gum
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.18.
  • Alginate
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.
  • Processing of Polymers for Biomedical Devices
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.1.
  • Fabrication of Polymer Films
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.2.
  • Spinning Industrial Polymers
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.3.
  • Fabrication of Shaped Polymer Objects
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.4.
  • Calendaring
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.6.
  • Future Perspectives
  • 1.2.2.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.7.
  • Conclusions
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • Acknowledgments
  • Arjumand A. Kittur
  • Condensation Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • References
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 2.1.
  • Introduction
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Machine-generated contents note:
  • Mahadevappa Y. Kariduraganavar
  • 2.2.
  • The Hierarchical Characterization Approach
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.
  • Bulk Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.1.
  • Thermal Properties
  • Ravindra R. Kamble
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.2.
  • Mechanical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.3.
  • Optical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Arjumand A. Kittur
  • 2.3.4.
  • Electrical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.
  • Surface Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.1.
  • Microscopic Characterization
  • 1.2.3.
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.2.
  • Surface Hydrophobicity
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.3.
  • Spectroscopic Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Metathesis Polymerization
  • 2.5.
  • Future Prospects
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • References
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 3.1.
  • Introduction
  • Tarun Saxena
  • Mahadevappa Y. Kariduraganavar
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.2.
  • Fibrin-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.3.
  • Elastin-Based Biomaterials
  • Tarun Saxena
  • Ravindra R. Kamble
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.4.
  • Silk-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.5.
  • Collagen-Based Biomaterials
  • Tarun Saxena
  • Arjumand A. Kittur
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.6.
  • Poly(Glutamic Acid)-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.7.
  • Cyanophycin and Poly(Aspartic Acid)-Based Biomaterials
  • Tarun Saxena
  • 1.3.
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.8.
  • Poly-L-Lysine-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.9.
  • Conclusions and Future Work
  • Tarun Saxena
  • Techniques of Polymerization
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • References
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 4.1.
  • Introduction
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • 1.1.
  • Mahadevappa Y. Kariduraganavar
  • Daisy M. Ramos
  • Aja Aravamudhan
  • 4.2.
  • Hyaluronic Acid
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.2.1.
  • Chemical Structure, Properties, and Sources
  • Ravindra R. Kamble
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.2.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Arjumand A. Kittur
  • 4.2.3.
  • Promises and Challenges with HA
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.
  • Chondroitin Sulphate
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • 1.3.1.
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Solution Polymerization
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.3.
  • Promises and Challenges with CS
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Mahadevappa Y. Kariduraganavar
  • 4.4.
  • Chitin and Chitosan
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ravindra R. Kamble
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A
  • Arjumand A. Kittur
  • 1.3.2.
  • Bulk (Mass) Polymerization
  • Introduction
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.3.
  • Suspension Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.4.
  • Precipitation Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.5.
  • Emulsion Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.
  • Polymers: Properties, Synthesis, and Their Biomedical Applications
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.1.
  • Polycaprolactone
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.2.
  • Polyethylene Glycol
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.3.
  • Polyurethane
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.4.
  • Polydioxanone or Poly-p-Dioxanone
  • 1.2.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.5.
  • Poly(Methyl Methacrylate)
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.6.
  • Polyglycolic Acid or Polyglycolide
  • Types of Polymerizations
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.7.
  • Polylactic Acid or Polylactide
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.8.
  • Polylactic-co-Glycolic Acid
  • 4.5.
  • Alginic Acid
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Nada
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.3.
  • Promises and Challenges with Alginates in Tissue Engineering
  • Daisy M. Ramos
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Aja Aravamudhan
  • 4.6.
  • Cellulose
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.3.
  • 4.6.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.6.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Promises and Challenges with Chitosan in Tissue Engineering
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.6.3.
  • Promises and Challenges with Cellulose
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.7.
  • Conclusions
  • Aja Aravamudhan
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Acknowledgments
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • References, Contents
  • Sangamesh G. Kumbar
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 5.1.
  • Introduction
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • Ahmed A. Nada
  • 5.2.
  • Chitosan Chemistry
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • 5.2.1.
  • Synthesis
  • Tao Jiang
  • Cato T. Laurencin
  • Daisy M. Ramos
  • Sangamesh G. Kumbar
  • Roshan James
  • 5.2.2.
  • Modification
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • Physical Properties and Characterization
  • 6.3.1.
  • Structure and Characteristics
  • Karen Burg
  • 6.3.2.
  • Processing
  • Karen Burg
  • References
  • Karen Burg
  • 7.1.
  • Introduction
  • Tao Jiang
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.
  • Synthesis and Characterization
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.1.
  • Synthesis
  • Roshan James
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.2.
  • Characterization
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.
  • Impact of Composition on Polyurethane Properties
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.1.
  • Poly(Ether Urethanes)
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.2.
  • Poly(Carbonate Urethanes)
  • Cato T. Laurencin
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.3.
  • Poly(Ether Ester Urethanes)
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.4.
  • Poly(Siloxane Urethanes)
  • 5.3.2.
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.5.
  • Polyurethane and Natural Polymers
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.6.
  • Polyurethane Composites
  • Structure and Property Relationship
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.7.
  • Surface-Modified Polyurethanes
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.4.
  • Phase Separation Behavior
  • Tao Jiang
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.5.
  • Calcification
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.
  • Polyurethane Applications
  • Roshan James
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.1.
  • Drug Delivery
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.2.
  • Tissue Engineering
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.3.
  • Polyurethane Medical Devices
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.7.
  • Conclusion
  • Note continued:
  • Cato T. Laurencin
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Acknowledgments
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • References
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • 5.4.
  • Sangamesh G. Kumbar
  • 8.1.
  • Introduction
  • Sara K. Murase
  • Jordi Puiggali
  • 8.2.
  • Synthesis of PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.3.
  • Biological Properties of Chitosan
  • Design of PEAs with a Given Microstructure
  • Sara K. Murase
  • Jordi Puiggali
  • 8.3.1.
  • Hyperbranched PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.4.
  • Liquid Crystals and Rigid-Chain PEAs
  • Sara K. Murase
  • Tao Jiang
  • Jordi Puiggali
  • 8.5.
  • PEAs from Renewable Sources
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.1.
  • Carbohydrate Derivatives
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.2.
  • Roshan James
  • PEAs from Vegetable Oils and Fatty Diacids
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.3.
  • PEAs Derived from a-Amino Acids and Their Applications in the Biomedical Field
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.
  • Miscellaneous Applications of PEAs
  • Sara K. Murase
  • Sangamesh G. Kumbar
  • Jordi Puiggali
  • 8.6.1.
  • Scaffolds from Electroactive Samples and Electrospun Nanofibres
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.2.
  • High-Performance Materials
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.3.
  • Cato T. Laurencin
  • Optical Properties
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.4.
  • Composites and Nanocomposites Based on PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.7.
  • Conclusions
  • Sara K. Murase
  • 5.4.1.
  • Jordi Puiggali
  • Acknowledgments
  • Sara K. Murase
  • Jordi Puiggali
  • References
  • Sara K. Murase
  • Jordi Puiggali
  • 9.1.
  • Introduction
  • Markus Heiny
  • Biodegradability
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.1.
  • Background
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.2.
  • Biocompatibility and Biodegradability Aspects
  • Markus Heiny
  • Tao Jiang
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.3.
  • Need for Functionalization
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.4.
  • Concepts of Polymerization and Functionalization
  • Markus Heiny
  • 5.3.
  • Roshan James
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.
  • Functionalized Polyesters
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.1.
  • Polylactide and Polyglycolide
  • Markus Heiny
  • Sangamesh G. Kumbar
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.2.
  • Polycaprolactone
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • Markus Heiny
  • 9.2.3.
  • Other Polyesters
  • Markus Heiny
  • Cato T. Laurencin
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • References
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 10.1.
  • History of Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • 5.4.2.
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.
  • Properties of Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.1.
  • Distinctive Features and Limitations
  • Biocompatibility
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.2.
  • Thermal Properties
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • Tao Jiang
  • 10.2.3.
  • Solubility
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.4.
  • Mechanical Properties
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Roshan James
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.5.
  • Stability
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.
  • Synthesis of Polyanhydrides
  • Sangamesh G. Kumbar
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.1.
  • Melt Condensation
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • Cato T. Laurencin
  • 10.3.2.
  • Solution Polymerization
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.3.
  • Dehydrative Coupling
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • 5.4.3.
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.4.
  • Ring-Opening Polymerization
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J
  • Chitosan Physics
  • Anti-Microbial Activity
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.5.
  • Chitosan Application in Tissue Engineering
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Tao Jiang
  • Cato T. Laurencin
  • 5.5.1.
  • Scaffold Fabrication Techniques
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.5.2.
  • Chitosan-Based Scaffolds for Tissue Engineering Applications
  • Tao Jiang
  • Cato T. Laurencin
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.6.
  • Chitosan Application in Drug Delivery
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.7.
  • Sangamesh G. Kumbar
  • Conclusions
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Acknowledgments
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Roshan James
  • References
  • Cato T. Laurencin
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • 6.1.
  • Advantages of Absorbable Poly(a-Ester)s
  • Karen Burg
  • 6.2.
  • Polylactides, Polyglycolides, and Copolymers Thereof
  • 5.3.1.
  • Karen Burg
  • 6.2.1.
  • Structure and Characteristics
  • Karen Burg
  • 6.2.2.
  • Processing
  • Karen Burg
  • 6.3.
  • Bacterial and Other Recombinant Polyesters
  • Karen Burg
  • Conventional Polyanhydrides
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.4.2.
  • Advanced Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Domb
  • Abraham J. Domb
  • 10.5.
  • Biodegradability
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.6.
  • Biocompatibility
  • Muntimadugu Eameema
  • 10.4.
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.
  • Applications
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.1.
  • Classes of Polyanhydrides
  • Drug Delivery
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.2.
  • Programmable Drug Release
  • Lakshmi Sailaja Duvvuri
  • Abraham J. Domb
  • Wahid Khan
  • Muntimadugu Eameema
  • Muntimadugu Eameema
  • 10.7.3.
  • Immunomodulation
  • Muntimadugu Eameema
  • Abraham J. Domb
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • 10.7.4.
  • Protein Delivery
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.5.
  • Tissue Engineering
  • Wahid Khan
  • Abraham J. Domb
  • Lakshmi Sailaja Duvvuri
  • Muntimadugu Eameema
  • References
  • Wahid Khan
  • Wahid Khan
  • Lakshmi Sailaja Duvvuri
  • Muntimadugu Eameema
  • Abraham J. Domb
  • 11.1.
  • Introduction
  • Roshan James
  • Meng Deng
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Abraham J. Domb
  • 11.2.
  • Synthesis of Polyphosphazenes
  • Roshan James
  • Meng Deng
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 11.3.
  • Biodegradable Polyphosphazenes
  • Roshan James
  • Cato T. Laurencin
  • 10.4.1.
  • Sangamesh G. Kumbar
  • Meng Deng
  • 11.3.1.
  • Different Classes
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • 11.3.2.
  • Degradation Mechanisms
  • Applications of Biodegradable Polyphosphazenes in Tissue Engineering
  • Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.1.
  • Synthesis of Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.2.
  • Roshan James
  • Applications of Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.7.
  • Conclusions
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • References
  • Cato T. Laurencin
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 13.1.
  • Introduction
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.
  • Biomedical Applications
  • Steve Brocchini
  • Sangamesh G. Kumbar
  • Sheiliza Carmali
  • 13.2.1.
  • Polymer-Drug Conjugates
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.2.
  • Particulate-Associated Systems
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.3.
  • Meng Deng
  • Polymer-Oligonucleotide Complexes
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.4.
  • Hydrogels
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.5.
  • Polyacetals in Tissue Engineering
  • Steve Brocchini
  • 11.4.1.
  • Sheiliza Carmali
  • 13.3.
  • Conclusions
  • Steve Brocchini
  • Sheiliza Carmali
  • Acknowledgments
  • Steve Brocchini
  • Sheiliza Carmali
  • References
  • Steve Brocchini
  • Bone Tissue Regeneration
  • Sheiliza Carmali
  • 14.1.
  • Introduction
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.1.1.
  • Current Clinical Strategies
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.
  • Roshan James
  • Biomaterials
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.1.
  • Synthetic Polymers
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.2.
  • Naturally-Derived Scaffolds
  • Jennifer Elisseeff
  • Cato T. Laurencin
  • Iwen Wu
  • 14.2.3.
  • Extracellular Matrix-Based Materials
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.
  • Cell Sources
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.1.
  • Sangamesh G. Kumbar
  • Cells of Adipose Tissue
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.2.
  • Adult Stem Cells
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.3.
  • Embryonic Stem Cells
  • Jennifer Elisseeff
  • Note continued:
  • Meng Deng
  • Iwen Wu
  • 14.3.4.
  • Induced Pluripotent Stem Cells
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.4.
  • Discussion
  • Jennifer Elisseeff
  • Iwen Wu
  • References
  • 11.4.2.
  • Jennifer Elisseeff
  • Iwen Wu
  • 15.1.
  • Introduction
  • Omathanu Perumal
  • Umesh Gupta
  • 15.2.
  • Synthesis and Characterization
  • Omathanu Perumal
  • Umesh Gupta
  • Soft Tissue Regeneration
  • 15.2.1.
  • Divergent Approach
  • Omathanu Perumal
  • Umesh Gupta
  • 15.2.2.
  • Convergent Approach
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.
  • Dendrimer Types
  • Roshan James
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.1.
  • PAMAM Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.2.
  • PPI Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • Cato T. Laurencin
  • 15.3.3.
  • Carbohydrate Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.4.
  • Triazine Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.5.
  • Peptide Dendrimers
  • Sangamesh G. Kumbar
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.6.
  • Miscellaneous
  • Omathanu Perumal
  • Umesh Gupta
  • 15.4.
  • Drug Loading in Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • Meng Deng
  • 15.4.1.
  • Non-Covalent Interactions
  • Omathanu Perumal
  • Umesh Gupta
  • 15.4.2.
  • Covalent Interactions
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.
  • Biomedical Applications
  • 11.4.3.
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.1.
  • Drug Delivery Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.2.
  • Gene Delivery
  • Omathanu Perumal
  • Umesh Gupta
  • Applications of Biodegradable Polyphosphazenes in Drug Delivery
  • 15.5.3.
  • Diagnostic Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.4.
  • Therapeutic Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.6.
  • Summary
  • Roshan James
  • Omathanu Perumal
  • Umesh Gupta
  • References
  • Omathanu Perumal
  • Umesh Gupta
  • 16.1.
  • Introduction
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • 11.3.3.
  • Cato T. Laurencin
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.2.
  • Design Strategies of CABEs
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Richard T. Tran
  • Zhiwei Xie
  • Xiaochun Bai
  • Sangamesh G. Kumbar
  • Jian Yang
  • 16.2.1.
  • Poly(Diol Citrate) Synthesis
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.2.2.
  • Meng Deng
  • Molecular Design of CABEs
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.
  • Applications of CABEs
  • Jinshan Guo
  • 11.5.
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.1.
  • Cardiovascular Applications
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Conclusions and Future Trends
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.2.
  • Orthopaedic Applications
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Roshan James
  • Richard T. Tran
  • 16.3.3.
  • Bioimaging and Drug Delivery
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.4.
  • Cato T. Laurencin
  • Tissue Bioadhesive
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.5.
  • Other Applications
  • Jinshan Guo
  • Sangamesh G. Kumbar
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.4.
  • Conclusions
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Meng Deng
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • Acknowledgments
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • Acknowledgments
  • References
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 17.1.
  • Introduction
  • Yong Wang
  • Biocompatibility
  • Roshan James
  • Mark R. Battig
  • 17.2.
  • Biomaterials
  • Yong Wang
  • Mark R. Battig
  • 17.3.
  • Nucleic Acid Aptamers
  • Yong Wang
  • Mark R. Battig
  • 17.3.1.
  • Cato T. Laurencin
  • Upstream Selection
  • Yong Wang
  • Mark R. Battig
  • 17.3.2.
  • Downstream Truncation
  • Yong Wang
  • Mark R. Battig
  • 17.4.
  • Development of Aptamer- Functionalized Biomaterials
  • Yong Wang
  • Sangamesh G. Kumbar
  • Mark R. Battig
  • 17.4.1.
  • Aptamer-Functionalized Hydrogels
  • Yong Wang
  • Mark R. Battig
  • 17.4.2.
  • Aptamer-Functionalized Coatings
  • Yong Wang
  • Mark R. Battig
  • 17.4.3.
  • Meng Deng
  • Aptamer-Functionalized Nanomaterials
  • Yong Wang
  • Mark R. Battig
  • 17.5.
  • Conclusion
  • Yong Wang
  • Mark R. Battig
  • Acknowledgement
  • Mark R. Battig
  • Yong Wang
  • References
  • References
  • Yong Wang
  • Mark R
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • 12.1.
  • Roshan James
  • Introduction
  • Walid P. Qaqish
  • Kush N. Shah
  • Yang H. Yun
  • 12.2.
  • Synthesis of "Pseudo" Poly(Amino Acid)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.
  • Cato T. Laurencin
  • Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.1.
  • Synthesis of Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.2.
  • Sangamesh G. Kumbar
  • Applications of Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.4.
  • Amide-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.4.1.
  • Meng Deng
  • Applications Poly(Amides) as "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.
  • Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.1.
  • 11.4.
  • Synthesis of Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.2.
  • Applications of Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.
  • Anuradha Subramaniam
  • 18.2.1.
  • Poly(Ethylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.2.
  • Poly(Propylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.3.
  • Battig
  • Poly(Tetrafluoroethylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.4.
  • Poly(Methyl Methacrylate)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.5.
  • Poly(Dimethylsiloxane)
  • Swaminathan Sethuraman
  • 18.1.
  • Anuradha Subramaniam
  • 18.2.6.
  • Polyurethanes
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.7.
  • Poly(Ethylene Terphthlate)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.8.
  • Introduction
  • Poly(Sulphone)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.9.
  • Poly(Ethyleneoxide)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.
  • Characterization
  • Swaminathan Sethuraman
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.1.
  • Surface Characterization
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.2.
  • Biostability
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.4.
  • Anuradha Subramaniam
  • Future Prospects
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • References
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 19.1.
  • Introduction
  • Tram T. Dang
  • Ali Khademhosseini
  • 18.2.
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.2.
  • Biocompatibility of Polymeric Prostheses
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.2.1.
  • Effects of Implantable Prostheses on Host Tissues and Immune System
  • Non-Degradable Polymers as Biomaterials
  • Adnan Memic
  • Mehdi Nikkhah
  • Tram T. Dang
  • Ali Khademhosseini
  • 19.2.2.
  • Biochemical Effects of Host Environment on Polymeric Implants
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • Swaminathan Sethuraman
  • Applications of Polymeric Biomaterials in Implantable Prostheses
  • Surface and Morphological Characterization of Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.3.1.
  • Morphology
  • Diane J. Burgess
  • Bing Gu
  • 20.3.2.
  • Molecular Weight and Particle Size
  • Diane J. Burgess
  • Tram T. Dang
  • Bing Gu
  • 20.3.3.
  • Surface Characterization
  • Diane J. Burgess
  • Bing Gu
  • 20.4.
  • Biocompatibility Testing of Polymeric Materials
  • Diane J. Burgess
  • Bing Gu
  • 20.4.1.
  • Ali Khademhosseini
  • Regulatory Guidelines for Biocompatibility Testing
  • Diane J. Burgess
  • Bing Gu
  • 20.4.2.
  • Biodegradable Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.4.3.
  • In Vitro Cytotoxicity Assessment
  • Diane J. Burgess
  • Adnan Memic
  • Bing Gu
  • 20.4.4.
  • In Vivo Biocompatibility Evaluation
  • Diane J. Burgess
  • Bing Gu
  • 20.5.
  • In Vitro Dissolution Testing Methods for Polymeric Formulations
  • Bing Gu
  • Diane J. Burgess
  • 20.5.1.
  • Mehdi Nikkhah
  • Regulatory Guidelines and In Vitro-In Vivo Correlation
  • Diane J. Burgess
  • Bing Gu
  • 20.5.2.
  • In Vitro Dissolution Testing for Microspheres
  • Diane J. Burgess
  • Bing Gu
  • 20.5.3.
  • In Vitro Dissolution Testing for Nanoparticles
  • Diane J. Burgess
  • 19.4.1.
  • Bing Gu
  • 20.5.4.
  • In Vitro Dissolution Testing for In Situ Gel Formulations
  • Diane J. Burgess
  • Bing Gu
  • 20.6.
  • Conclusions
  • Diane J. Burgess
  • Bing Gu
  • References
  • Cardiovascular Applications
  • Diane J. Burgess
  • Bing Gu
  • 21.1.
  • Introduction
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Tram T. Dang
  • Sahar E. Fard
  • 21.2.
  • Natural Polymers in Tissue Engineering and Regenerative Medicine
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • Ali Khademhosseini
  • 21.2.1.
  • Proteins as Biomaterials
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.2.2.
  • Adnan Memic
  • Polysaccharides as Biomaterials
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.
  • Synthetic Polymers in Tissue Engineering and Regenerative Medicine
  • Note continued:
  • Mehdi Nikkhah
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.1.
  • Poly(a-Esters)
  • Xiaoyan Tang
  • 19.4.2.
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.2.
  • Polyurethanes
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Orthopaedic Applications
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.3.
  • Polyphosphazenes
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Tram T. Dang
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.4.
  • Polyanhydrides
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Ali Khademhosseini
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.5.
  • Poly(propylene Fumarate)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Adnan Memic
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.6.
  • Poly(ethylene Glycol)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Mehdi Nikkhah
  • Sahar E. Fard
  • 21.3.7.
  • Poly(Ortho Esters)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 19.4.3.
  • 21.3.8.
  • Polyphosphoesters
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.9.
  • Ophthalmologic Applications
  • Poly(ester Amide)s
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Sahar E. Fard
  • Xiaoyan Tang
  • Katelyn Tran
  • Xiaojun Yu
  • Matthew D. Harmon
  • 21.4.
  • Conclusions
  • Tram T. Dang
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • Acknowledgments
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • 19.3.
  • Ali Khademhosseini
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • References
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Adnan Memic
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 22.1.
  • Introduction
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.2.
  • Current Standards for Medical Diagnostics in the CNS
  • Mehdi Nikkhah
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.3.
  • The Challenge of Diagnostics in the CNS
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.4.
  • Polymeric Nanoparticles
  • 19.4.4.
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.5.
  • Lipid-Based Nanocarrier Diagnostic Systems
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.6.
  • Dendrimers
  • Dental Applications
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.7.
  • Quantum Dots
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.8.
  • Microbubbles
  • Tram T. Dang
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.9.
  • Biosensors
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.10.
  • Toxicity
  • Ali Khademhosseini
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.11.
  • Theranostics
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.12.
  • Conclusion and Future Opportunities
  • Adnan Memic
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • References
  • Dina Rassias
  • Yuan Yin
  • Anjana Jain
  • 23.1.
  • Introduction
  • Justin L. Brown
  • Mehdi Nikkhah
  • Brittany L. Banik
  • 23.1.1.
  • Nanomedicine
  • Justin L. Brown
  • Brittany L. Banik
  • 23.1.2.
  • Natural and Synthetic Polymers
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.
  • 19.5.
  • Polymeric Nanomedicine Considerations
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.1.
  • Nanoparticles
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.2.
  • Nanofibres
  • Justin L. Brown
  • Structural Compatibility and Mechanical Durability of Polymeric Prostheses
  • Emerging Classes of Polymeric Biomaterials for Implantable Prostheses
  • Brittany L. Banik
  • 23.3.
  • Polymeric Nanomedicine Applications
  • Justin L. Brown
  • Brittany L. Banik
  • 23.3.1.
  • Drug Delivery
  • Justin L. Brown
  • Brittany L. Banik
  • 23.3.2.
  • Tram T. Dang
  • Regenerative Medicine
  • Brittany L. Banik
  • Justin L. Brown
  • 23.3.3.
  • Imaging
  • Justin L. Brown
  • Brittany L. Banik
  • 23.4.
  • Nanotoxicity and Polymeric Challenges
  • Brittany L. Banik
  • Ali Khademhosseini
  • Justin L. Brown
  • 23.5.
  • Conclusions
  • Brittany L. Banik
  • Justin L. Brown
  • References
  • Justin L. Brown
  • Brittany L. Banik
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.5.1.
  • Anti-Fouling Polymeric Coatings
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Tram T. Dang
  • Mehdi Nikkhah
  • 19.5.2.
  • Polymeric Surfaces to Direct Biological Responses
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.5.3.
  • Shape-Memory Polymers
  • Tram T. Dang
  • Ali Khademhosseini
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.6.
  • Conclusion and Perspectives
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • Acknowledgments
  • Adnan Memic
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • References
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 20.1.
  • Mehdi Nikkhah
  • Introduction
  • Diane J. Burgess
  • Bing Gu
  • 20.2.
  • Mechanical/Thermal Properties of Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.2.1.
  • Stress-Strain
  • Diane J. Burgess
  • 19.4.
  • Bing Gu
  • 20.2.2.
  • Viscoelastic
  • Diane J. Burgess
  • Bing Gu
  • 20.2.3.
  • Differential Scanning Calorimetry
  • Diane J. Burgess
  • Bing Gu
  • 20.3.
Control code
869281815
Dimensions
unknown
Edition
First edition.
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9780123972903
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)869281815
Label
Natural and synthetic biomedical polymers, edited by Sangamesh Kumbar, Cato Laurencin, Meng Deng
Publication
Note
Machine generated contents note: Section 1. Synthesis and Characterization 1.1. Polymer Synthesis: the design and synthesis of important classes of polymeric biomaterials involving different monomers will be discussed. 1.2. Characterization of Polymeric Biomaterials: in vitro and in vivo characterization of advanced biomaterials, (cell and tissue interactions with polymeric biomaterials with various physico-chemical, mechanical properties, surface and degradation properties Section 2. Currently Used Materials 2.1. Proteins and poly(amino acids) including collagen, poly(amino acids), elastin and elastin-like polypeptides, albumin, and fibrin 2.2. Polysaccharides including hyaluronic acid, chondroitin sulfate, chitin and chitosan, and alginic acid 2.3. Poly(a-ester)s including polylactides, polyglycolide, poly(lactide-co-glycolide), polycaprolactone, and bacterial polyesters 2.4. Polyurethanes 2.5. Poly(ester amide) 2.6. Poly(ortho esters) 2.7. Polyanhydrides 2.8. Poly(propylene fumarate) 2.9. Polyphosphazenes 2.10. Pseudo poly(amino acid)s 2.11. Polyphosphoester 2.12. Polyacetals 2.13. Poly(ethylene glycol)-based biomaterials 2.14. Dendrimers 2.15. Elastomers Section 3. Biomedical Applications of Polymeric Biomaterials 3.1. Polymeric Biomaterials in Biomedical Implants 3.2. Polymeric Biomaterials in Drug Delivery 3.3. Polymeric Biomaterials in Tissue Engineering 3.4. Polymeric Biomaterials in Medical Diagnostics
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.9.
  • Polyhydroxybutyrate
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.10.
  • Polycyanoacrylates
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.11.
  • Polyvinylpyrrolidone
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.12.
  • Chitosan
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.13.
  • Gelatin
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.14.
  • Carrageenan
  • 1.2.1.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.15.
  • Hyaluronic Acid
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.16.
  • Xanthan Gum
  • Addition Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.17.
  • Acacia Gum
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.18.
  • Alginate
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.
  • Processing of Polymers for Biomedical Devices
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.1.
  • Fabrication of Polymer Films
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.2.
  • Spinning Industrial Polymers
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.3.
  • Fabrication of Shaped Polymer Objects
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.5.4.
  • Calendaring
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.6.
  • Future Perspectives
  • 1.2.2.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.7.
  • Conclusions
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • Acknowledgments
  • Arjumand A. Kittur
  • Condensation Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • References
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 2.1.
  • Introduction
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Machine-generated contents note:
  • Mahadevappa Y. Kariduraganavar
  • 2.2.
  • The Hierarchical Characterization Approach
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.
  • Bulk Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.1.
  • Thermal Properties
  • Ravindra R. Kamble
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.2.
  • Mechanical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.3.3.
  • Optical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Arjumand A. Kittur
  • 2.3.4.
  • Electrical Properties
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.
  • Surface Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.1.
  • Microscopic Characterization
  • 1.2.3.
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.2.
  • Surface Hydrophobicity
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 2.4.3.
  • Spectroscopic Characterization
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • Metathesis Polymerization
  • 2.5.
  • Future Prospects
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • References
  • Swaminathan Sethuraman
  • Meera Parthasarthy
  • 3.1.
  • Introduction
  • Tarun Saxena
  • Mahadevappa Y. Kariduraganavar
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.2.
  • Fibrin-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.3.
  • Elastin-Based Biomaterials
  • Tarun Saxena
  • Ravindra R. Kamble
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.4.
  • Silk-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.5.
  • Collagen-Based Biomaterials
  • Tarun Saxena
  • Arjumand A. Kittur
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.6.
  • Poly(Glutamic Acid)-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.7.
  • Cyanophycin and Poly(Aspartic Acid)-Based Biomaterials
  • Tarun Saxena
  • 1.3.
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.8.
  • Poly-L-Lysine-Based Biomaterials
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 3.9.
  • Conclusions and Future Work
  • Tarun Saxena
  • Techniques of Polymerization
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • References
  • Tarun Saxena
  • Chandra M. Valmikinathan
  • Lohitash Karumbaiah
  • 4.1.
  • Introduction
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • 1.1.
  • Mahadevappa Y. Kariduraganavar
  • Daisy M. Ramos
  • Aja Aravamudhan
  • 4.2.
  • Hyaluronic Acid
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.2.1.
  • Chemical Structure, Properties, and Sources
  • Ravindra R. Kamble
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.2.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Arjumand A. Kittur
  • 4.2.3.
  • Promises and Challenges with HA
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.
  • Chondroitin Sulphate
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • 1.3.1.
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Solution Polymerization
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.3.3.
  • Promises and Challenges with CS
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Mahadevappa Y. Kariduraganavar
  • 4.4.
  • Chitin and Chitosan
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ravindra R. Kamble
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A
  • Arjumand A. Kittur
  • 1.3.2.
  • Bulk (Mass) Polymerization
  • Introduction
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.3.
  • Suspension Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.4.
  • Precipitation Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.3.5.
  • Emulsion Polymerization
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.
  • Polymers: Properties, Synthesis, and Their Biomedical Applications
  • Ravindra R. Kamble
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.1.
  • Polycaprolactone
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.2.
  • Polyethylene Glycol
  • Arjumand A. Kittur
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.3.
  • Polyurethane
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.4.
  • Polydioxanone or Poly-p-Dioxanone
  • 1.2.
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.5.
  • Poly(Methyl Methacrylate)
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.6.
  • Polyglycolic Acid or Polyglycolide
  • Types of Polymerizations
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.7.
  • Polylactic Acid or Polylactide
  • Mahadevappa Y. Kariduraganavar
  • Ravindra R. Kamble
  • Arjumand A. Kittur
  • 1.4.8.
  • Polylactic-co-Glycolic Acid
  • 4.5.
  • Alginic Acid
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Nada
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.5.3.
  • Promises and Challenges with Alginates in Tissue Engineering
  • Daisy M. Ramos
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Aja Aravamudhan
  • 4.6.
  • Cellulose
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.4.3.
  • 4.6.1.
  • Chemical Structure, Properties, and Sources
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.6.2.
  • Attempts Made in Tissue Engineering and Drug Delivery
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Promises and Challenges with Chitosan in Tissue Engineering
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.6.3.
  • Promises and Challenges with Cellulose
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 4.7.
  • Conclusions
  • Aja Aravamudhan
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • Acknowledgments
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • References, Contents
  • Sangamesh G. Kumbar
  • Aja Aravamudhan
  • Sangamesh G. Kumbar
  • Ahmed A. Nada
  • Daisy M. Ramos
  • 5.1.
  • Introduction
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • Ahmed A. Nada
  • 5.2.
  • Chitosan Chemistry
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • 5.2.1.
  • Synthesis
  • Tao Jiang
  • Cato T. Laurencin
  • Daisy M. Ramos
  • Sangamesh G. Kumbar
  • Roshan James
  • 5.2.2.
  • Modification
  • Tao Jiang
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Roshan James
  • Physical Properties and Characterization
  • 6.3.1.
  • Structure and Characteristics
  • Karen Burg
  • 6.3.2.
  • Processing
  • Karen Burg
  • References
  • Karen Burg
  • 7.1.
  • Introduction
  • Tao Jiang
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.
  • Synthesis and Characterization
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.1.
  • Synthesis
  • Roshan James
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.2.2.
  • Characterization
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.
  • Impact of Composition on Polyurethane Properties
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.1.
  • Poly(Ether Urethanes)
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.2.
  • Poly(Carbonate Urethanes)
  • Cato T. Laurencin
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.3.
  • Poly(Ether Ester Urethanes)
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.4.
  • Poly(Siloxane Urethanes)
  • 5.3.2.
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.5.
  • Polyurethane and Natural Polymers
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.6.
  • Polyurethane Composites
  • Structure and Property Relationship
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.3.7.
  • Surface-Modified Polyurethanes
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.4.
  • Phase Separation Behavior
  • Tao Jiang
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.5.
  • Calcification
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.
  • Polyurethane Applications
  • Roshan James
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.1.
  • Drug Delivery
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.2.
  • Tissue Engineering
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.6.3.
  • Polyurethane Medical Devices
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • 7.7.
  • Conclusion
  • Note continued:
  • Cato T. Laurencin
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • Namdev B. Shelke
  • Acknowledgments
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • Sangamesh G. Kumbar
  • References
  • Namdev B. Shelke
  • Rajaram K. Nagarale
  • 5.4.
  • Sangamesh G. Kumbar
  • 8.1.
  • Introduction
  • Sara K. Murase
  • Jordi Puiggali
  • 8.2.
  • Synthesis of PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.3.
  • Biological Properties of Chitosan
  • Design of PEAs with a Given Microstructure
  • Sara K. Murase
  • Jordi Puiggali
  • 8.3.1.
  • Hyperbranched PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.4.
  • Liquid Crystals and Rigid-Chain PEAs
  • Sara K. Murase
  • Tao Jiang
  • Jordi Puiggali
  • 8.5.
  • PEAs from Renewable Sources
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.1.
  • Carbohydrate Derivatives
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.2.
  • Roshan James
  • PEAs from Vegetable Oils and Fatty Diacids
  • Sara K. Murase
  • Jordi Puiggali
  • 8.5.3.
  • PEAs Derived from a-Amino Acids and Their Applications in the Biomedical Field
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.
  • Miscellaneous Applications of PEAs
  • Sara K. Murase
  • Sangamesh G. Kumbar
  • Jordi Puiggali
  • 8.6.1.
  • Scaffolds from Electroactive Samples and Electrospun Nanofibres
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.2.
  • High-Performance Materials
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.3.
  • Cato T. Laurencin
  • Optical Properties
  • Sara K. Murase
  • Jordi Puiggali
  • 8.6.4.
  • Composites and Nanocomposites Based on PEAs
  • Sara K. Murase
  • Jordi Puiggali
  • 8.7.
  • Conclusions
  • Sara K. Murase
  • 5.4.1.
  • Jordi Puiggali
  • Acknowledgments
  • Sara K. Murase
  • Jordi Puiggali
  • References
  • Sara K. Murase
  • Jordi Puiggali
  • 9.1.
  • Introduction
  • Markus Heiny
  • Biodegradability
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.1.
  • Background
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.2.
  • Biocompatibility and Biodegradability Aspects
  • Markus Heiny
  • Tao Jiang
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.3.
  • Need for Functionalization
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.1.4.
  • Concepts of Polymerization and Functionalization
  • Markus Heiny
  • 5.3.
  • Roshan James
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.
  • Functionalized Polyesters
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.1.
  • Polylactide and Polyglycolide
  • Markus Heiny
  • Sangamesh G. Kumbar
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 9.2.2.
  • Polycaprolactone
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • Markus Heiny
  • 9.2.3.
  • Other Polyesters
  • Markus Heiny
  • Cato T. Laurencin
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • References
  • Markus Heiny
  • Jonathan Johannes Wurth
  • Venkatram Prasad Shastri
  • 10.1.
  • History of Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • 5.4.2.
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.
  • Properties of Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.1.
  • Distinctive Features and Limitations
  • Biocompatibility
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.2.
  • Thermal Properties
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • Tao Jiang
  • 10.2.3.
  • Solubility
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.4.
  • Mechanical Properties
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Roshan James
  • Wahid Khan
  • Abraham J. Domb
  • 10.2.5.
  • Stability
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.
  • Synthesis of Polyanhydrides
  • Sangamesh G. Kumbar
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.1.
  • Melt Condensation
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • Cato T. Laurencin
  • 10.3.2.
  • Solution Polymerization
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.3.
  • Dehydrative Coupling
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • 5.4.3.
  • Wahid Khan
  • Abraham J. Domb
  • 10.3.4.
  • Ring-Opening Polymerization
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J
  • Chitosan Physics
  • Anti-Microbial Activity
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.5.
  • Chitosan Application in Tissue Engineering
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Tao Jiang
  • Cato T. Laurencin
  • 5.5.1.
  • Scaffold Fabrication Techniques
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.5.2.
  • Chitosan-Based Scaffolds for Tissue Engineering Applications
  • Tao Jiang
  • Cato T. Laurencin
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.6.
  • Chitosan Application in Drug Delivery
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 5.7.
  • Sangamesh G. Kumbar
  • Conclusions
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Acknowledgments
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Roshan James
  • References
  • Cato T. Laurencin
  • Tao Jiang
  • Roshan James
  • Sangamesh G. Kumbar
  • 6.1.
  • Advantages of Absorbable Poly(a-Ester)s
  • Karen Burg
  • 6.2.
  • Polylactides, Polyglycolides, and Copolymers Thereof
  • 5.3.1.
  • Karen Burg
  • 6.2.1.
  • Structure and Characteristics
  • Karen Burg
  • 6.2.2.
  • Processing
  • Karen Burg
  • 6.3.
  • Bacterial and Other Recombinant Polyesters
  • Karen Burg
  • Conventional Polyanhydrides
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.4.2.
  • Advanced Polyanhydrides
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Domb
  • Abraham J. Domb
  • 10.5.
  • Biodegradability
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.6.
  • Biocompatibility
  • Muntimadugu Eameema
  • 10.4.
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.
  • Applications
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.1.
  • Classes of Polyanhydrides
  • Drug Delivery
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.2.
  • Programmable Drug Release
  • Lakshmi Sailaja Duvvuri
  • Abraham J. Domb
  • Wahid Khan
  • Muntimadugu Eameema
  • Muntimadugu Eameema
  • 10.7.3.
  • Immunomodulation
  • Muntimadugu Eameema
  • Abraham J. Domb
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • 10.7.4.
  • Protein Delivery
  • Muntimadugu Eameema
  • Lakshmi Sailaja Duvvuri
  • Lakshmi Sailaja Duvvuri
  • Wahid Khan
  • Abraham J. Domb
  • 10.7.5.
  • Tissue Engineering
  • Wahid Khan
  • Abraham J. Domb
  • Lakshmi Sailaja Duvvuri
  • Muntimadugu Eameema
  • References
  • Wahid Khan
  • Wahid Khan
  • Lakshmi Sailaja Duvvuri
  • Muntimadugu Eameema
  • Abraham J. Domb
  • 11.1.
  • Introduction
  • Roshan James
  • Meng Deng
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • Abraham J. Domb
  • 11.2.
  • Synthesis of Polyphosphazenes
  • Roshan James
  • Meng Deng
  • Sangamesh G. Kumbar
  • Cato T. Laurencin
  • 11.3.
  • Biodegradable Polyphosphazenes
  • Roshan James
  • Cato T. Laurencin
  • 10.4.1.
  • Sangamesh G. Kumbar
  • Meng Deng
  • 11.3.1.
  • Different Classes
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • 11.3.2.
  • Degradation Mechanisms
  • Applications of Biodegradable Polyphosphazenes in Tissue Engineering
  • Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.1.
  • Synthesis of Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.2.
  • Roshan James
  • Applications of Urethane-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.7.
  • Conclusions
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • References
  • Cato T. Laurencin
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 13.1.
  • Introduction
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.
  • Biomedical Applications
  • Steve Brocchini
  • Sangamesh G. Kumbar
  • Sheiliza Carmali
  • 13.2.1.
  • Polymer-Drug Conjugates
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.2.
  • Particulate-Associated Systems
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.3.
  • Meng Deng
  • Polymer-Oligonucleotide Complexes
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.4.
  • Hydrogels
  • Steve Brocchini
  • Sheiliza Carmali
  • 13.2.5.
  • Polyacetals in Tissue Engineering
  • Steve Brocchini
  • 11.4.1.
  • Sheiliza Carmali
  • 13.3.
  • Conclusions
  • Steve Brocchini
  • Sheiliza Carmali
  • Acknowledgments
  • Steve Brocchini
  • Sheiliza Carmali
  • References
  • Steve Brocchini
  • Bone Tissue Regeneration
  • Sheiliza Carmali
  • 14.1.
  • Introduction
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.1.1.
  • Current Clinical Strategies
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.
  • Roshan James
  • Biomaterials
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.1.
  • Synthetic Polymers
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.2.2.
  • Naturally-Derived Scaffolds
  • Jennifer Elisseeff
  • Cato T. Laurencin
  • Iwen Wu
  • 14.2.3.
  • Extracellular Matrix-Based Materials
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.
  • Cell Sources
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.1.
  • Sangamesh G. Kumbar
  • Cells of Adipose Tissue
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.2.
  • Adult Stem Cells
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.3.3.
  • Embryonic Stem Cells
  • Jennifer Elisseeff
  • Note continued:
  • Meng Deng
  • Iwen Wu
  • 14.3.4.
  • Induced Pluripotent Stem Cells
  • Jennifer Elisseeff
  • Iwen Wu
  • 14.4.
  • Discussion
  • Jennifer Elisseeff
  • Iwen Wu
  • References
  • 11.4.2.
  • Jennifer Elisseeff
  • Iwen Wu
  • 15.1.
  • Introduction
  • Omathanu Perumal
  • Umesh Gupta
  • 15.2.
  • Synthesis and Characterization
  • Omathanu Perumal
  • Umesh Gupta
  • Soft Tissue Regeneration
  • 15.2.1.
  • Divergent Approach
  • Omathanu Perumal
  • Umesh Gupta
  • 15.2.2.
  • Convergent Approach
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.
  • Dendrimer Types
  • Roshan James
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.1.
  • PAMAM Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.2.
  • PPI Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • Cato T. Laurencin
  • 15.3.3.
  • Carbohydrate Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.4.
  • Triazine Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.5.
  • Peptide Dendrimers
  • Sangamesh G. Kumbar
  • Omathanu Perumal
  • Umesh Gupta
  • 15.3.6.
  • Miscellaneous
  • Omathanu Perumal
  • Umesh Gupta
  • 15.4.
  • Drug Loading in Dendrimers
  • Omathanu Perumal
  • Umesh Gupta
  • Meng Deng
  • 15.4.1.
  • Non-Covalent Interactions
  • Omathanu Perumal
  • Umesh Gupta
  • 15.4.2.
  • Covalent Interactions
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.
  • Biomedical Applications
  • 11.4.3.
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.1.
  • Drug Delivery Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.2.
  • Gene Delivery
  • Omathanu Perumal
  • Umesh Gupta
  • Applications of Biodegradable Polyphosphazenes in Drug Delivery
  • 15.5.3.
  • Diagnostic Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.5.4.
  • Therapeutic Applications
  • Omathanu Perumal
  • Umesh Gupta
  • 15.6.
  • Summary
  • Roshan James
  • Omathanu Perumal
  • Umesh Gupta
  • References
  • Omathanu Perumal
  • Umesh Gupta
  • 16.1.
  • Introduction
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • 11.3.3.
  • Cato T. Laurencin
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.2.
  • Design Strategies of CABEs
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Richard T. Tran
  • Zhiwei Xie
  • Xiaochun Bai
  • Sangamesh G. Kumbar
  • Jian Yang
  • 16.2.1.
  • Poly(Diol Citrate) Synthesis
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.2.2.
  • Meng Deng
  • Molecular Design of CABEs
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.
  • Applications of CABEs
  • Jinshan Guo
  • 11.5.
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.1.
  • Cardiovascular Applications
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Conclusions and Future Trends
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.2.
  • Orthopaedic Applications
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Roshan James
  • Richard T. Tran
  • 16.3.3.
  • Bioimaging and Drug Delivery
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.4.
  • Cato T. Laurencin
  • Tissue Bioadhesive
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.3.5.
  • Other Applications
  • Jinshan Guo
  • Sangamesh G. Kumbar
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 16.4.
  • Conclusions
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Meng Deng
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • Acknowledgments
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • Acknowledgments
  • References
  • Jinshan Guo
  • Dianna Y. Nguyen
  • Jian Yang
  • Zhiwei Xie
  • Xiaochun Bai
  • Richard T. Tran
  • 17.1.
  • Introduction
  • Yong Wang
  • Biocompatibility
  • Roshan James
  • Mark R. Battig
  • 17.2.
  • Biomaterials
  • Yong Wang
  • Mark R. Battig
  • 17.3.
  • Nucleic Acid Aptamers
  • Yong Wang
  • Mark R. Battig
  • 17.3.1.
  • Cato T. Laurencin
  • Upstream Selection
  • Yong Wang
  • Mark R. Battig
  • 17.3.2.
  • Downstream Truncation
  • Yong Wang
  • Mark R. Battig
  • 17.4.
  • Development of Aptamer- Functionalized Biomaterials
  • Yong Wang
  • Sangamesh G. Kumbar
  • Mark R. Battig
  • 17.4.1.
  • Aptamer-Functionalized Hydrogels
  • Yong Wang
  • Mark R. Battig
  • 17.4.2.
  • Aptamer-Functionalized Coatings
  • Yong Wang
  • Mark R. Battig
  • 17.4.3.
  • Meng Deng
  • Aptamer-Functionalized Nanomaterials
  • Yong Wang
  • Mark R. Battig
  • 17.5.
  • Conclusion
  • Yong Wang
  • Mark R. Battig
  • Acknowledgement
  • Mark R. Battig
  • Yong Wang
  • References
  • References
  • Yong Wang
  • Mark R
  • Roshan James
  • Cato T. Laurencin
  • Sangamesh G. Kumbar
  • Meng Deng
  • 12.1.
  • Roshan James
  • Introduction
  • Walid P. Qaqish
  • Kush N. Shah
  • Yang H. Yun
  • 12.2.
  • Synthesis of "Pseudo" Poly(Amino Acid)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.
  • Cato T. Laurencin
  • Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.1.
  • Synthesis of Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.3.2.
  • Sangamesh G. Kumbar
  • Applications of Ester-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.4.
  • Amide-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.4.1.
  • Meng Deng
  • Applications Poly(Amides) as "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.
  • Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.1.
  • 11.4.
  • Synthesis of Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.5.2.
  • Applications of Carbonate-Based "Pseudo" Poly(Amino Acids)
  • Kush N. Shah
  • Yang H. Yun
  • Walid P. Qaqish
  • 12.6.
  • Anuradha Subramaniam
  • 18.2.1.
  • Poly(Ethylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.2.
  • Poly(Propylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.3.
  • Battig
  • Poly(Tetrafluoroethylene)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.4.
  • Poly(Methyl Methacrylate)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.5.
  • Poly(Dimethylsiloxane)
  • Swaminathan Sethuraman
  • 18.1.
  • Anuradha Subramaniam
  • 18.2.6.
  • Polyurethanes
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.7.
  • Poly(Ethylene Terphthlate)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.8.
  • Introduction
  • Poly(Sulphone)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.2.9.
  • Poly(Ethyleneoxide)
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.
  • Characterization
  • Swaminathan Sethuraman
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.1.
  • Surface Characterization
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.3.2.
  • Biostability
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 18.4.
  • Anuradha Subramaniam
  • Future Prospects
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • References
  • Swaminathan Sethuraman
  • Anuradha Subramaniam
  • 19.1.
  • Introduction
  • Tram T. Dang
  • Ali Khademhosseini
  • 18.2.
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.2.
  • Biocompatibility of Polymeric Prostheses
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.2.1.
  • Effects of Implantable Prostheses on Host Tissues and Immune System
  • Non-Degradable Polymers as Biomaterials
  • Adnan Memic
  • Mehdi Nikkhah
  • Tram T. Dang
  • Ali Khademhosseini
  • 19.2.2.
  • Biochemical Effects of Host Environment on Polymeric Implants
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • Swaminathan Sethuraman
  • Applications of Polymeric Biomaterials in Implantable Prostheses
  • Surface and Morphological Characterization of Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.3.1.
  • Morphology
  • Diane J. Burgess
  • Bing Gu
  • 20.3.2.
  • Molecular Weight and Particle Size
  • Diane J. Burgess
  • Tram T. Dang
  • Bing Gu
  • 20.3.3.
  • Surface Characterization
  • Diane J. Burgess
  • Bing Gu
  • 20.4.
  • Biocompatibility Testing of Polymeric Materials
  • Diane J. Burgess
  • Bing Gu
  • 20.4.1.
  • Ali Khademhosseini
  • Regulatory Guidelines for Biocompatibility Testing
  • Diane J. Burgess
  • Bing Gu
  • 20.4.2.
  • Biodegradable Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.4.3.
  • In Vitro Cytotoxicity Assessment
  • Diane J. Burgess
  • Adnan Memic
  • Bing Gu
  • 20.4.4.
  • In Vivo Biocompatibility Evaluation
  • Diane J. Burgess
  • Bing Gu
  • 20.5.
  • In Vitro Dissolution Testing Methods for Polymeric Formulations
  • Bing Gu
  • Diane J. Burgess
  • 20.5.1.
  • Mehdi Nikkhah
  • Regulatory Guidelines and In Vitro-In Vivo Correlation
  • Diane J. Burgess
  • Bing Gu
  • 20.5.2.
  • In Vitro Dissolution Testing for Microspheres
  • Diane J. Burgess
  • Bing Gu
  • 20.5.3.
  • In Vitro Dissolution Testing for Nanoparticles
  • Diane J. Burgess
  • 19.4.1.
  • Bing Gu
  • 20.5.4.
  • In Vitro Dissolution Testing for In Situ Gel Formulations
  • Diane J. Burgess
  • Bing Gu
  • 20.6.
  • Conclusions
  • Diane J. Burgess
  • Bing Gu
  • References
  • Cardiovascular Applications
  • Diane J. Burgess
  • Bing Gu
  • 21.1.
  • Introduction
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Tram T. Dang
  • Sahar E. Fard
  • 21.2.
  • Natural Polymers in Tissue Engineering and Regenerative Medicine
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • Ali Khademhosseini
  • 21.2.1.
  • Proteins as Biomaterials
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.2.2.
  • Adnan Memic
  • Polysaccharides as Biomaterials
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.
  • Synthetic Polymers in Tissue Engineering and Regenerative Medicine
  • Note continued:
  • Mehdi Nikkhah
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.1.
  • Poly(a-Esters)
  • Xiaoyan Tang
  • 19.4.2.
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.2.
  • Polyurethanes
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Orthopaedic Applications
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.3.
  • Polyphosphazenes
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Tram T. Dang
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.4.
  • Polyanhydrides
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Ali Khademhosseini
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.5.
  • Poly(propylene Fumarate)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Adnan Memic
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.6.
  • Poly(ethylene Glycol)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Mehdi Nikkhah
  • Sahar E. Fard
  • 21.3.7.
  • Poly(Ortho Esters)
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 19.4.3.
  • 21.3.8.
  • Polyphosphoesters
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 21.3.9.
  • Ophthalmologic Applications
  • Poly(ester Amide)s
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Sahar E. Fard
  • Xiaoyan Tang
  • Katelyn Tran
  • Xiaojun Yu
  • Matthew D. Harmon
  • 21.4.
  • Conclusions
  • Tram T. Dang
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • Acknowledgments
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • 19.3.
  • Ali Khademhosseini
  • Paul Lee
  • Xiaojun Yu
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • References
  • Xiaoyan Tang
  • Shalumon Kottappally Thankappan
  • Paul Lee
  • Xiaojun Yu
  • Adnan Memic
  • Matthew D. Harmon
  • Katelyn Tran
  • Sahar E. Fard
  • 22.1.
  • Introduction
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.2.
  • Current Standards for Medical Diagnostics in the CNS
  • Mehdi Nikkhah
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.3.
  • The Challenge of Diagnostics in the CNS
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.4.
  • Polymeric Nanoparticles
  • 19.4.4.
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.5.
  • Lipid-Based Nanocarrier Diagnostic Systems
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.6.
  • Dendrimers
  • Dental Applications
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.7.
  • Quantum Dots
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.8.
  • Microbubbles
  • Tram T. Dang
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.9.
  • Biosensors
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.10.
  • Toxicity
  • Ali Khademhosseini
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.11.
  • Theranostics
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • 22.12.
  • Conclusion and Future Opportunities
  • Adnan Memic
  • Yuan Yin
  • Anjana Jain
  • Dina Rassias
  • References
  • Dina Rassias
  • Yuan Yin
  • Anjana Jain
  • 23.1.
  • Introduction
  • Justin L. Brown
  • Mehdi Nikkhah
  • Brittany L. Banik
  • 23.1.1.
  • Nanomedicine
  • Justin L. Brown
  • Brittany L. Banik
  • 23.1.2.
  • Natural and Synthetic Polymers
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.
  • 19.5.
  • Polymeric Nanomedicine Considerations
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.1.
  • Nanoparticles
  • Justin L. Brown
  • Brittany L. Banik
  • 23.2.2.
  • Nanofibres
  • Justin L. Brown
  • Structural Compatibility and Mechanical Durability of Polymeric Prostheses
  • Emerging Classes of Polymeric Biomaterials for Implantable Prostheses
  • Brittany L. Banik
  • 23.3.
  • Polymeric Nanomedicine Applications
  • Justin L. Brown
  • Brittany L. Banik
  • 23.3.1.
  • Drug Delivery
  • Justin L. Brown
  • Brittany L. Banik
  • 23.3.2.
  • Tram T. Dang
  • Regenerative Medicine
  • Brittany L. Banik
  • Justin L. Brown
  • 23.3.3.
  • Imaging
  • Justin L. Brown
  • Brittany L. Banik
  • 23.4.
  • Nanotoxicity and Polymeric Challenges
  • Brittany L. Banik
  • Ali Khademhosseini
  • Justin L. Brown
  • 23.5.
  • Conclusions
  • Brittany L. Banik
  • Justin L. Brown
  • References
  • Justin L. Brown
  • Brittany L. Banik
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.5.1.
  • Anti-Fouling Polymeric Coatings
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Tram T. Dang
  • Mehdi Nikkhah
  • 19.5.2.
  • Polymeric Surfaces to Direct Biological Responses
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.5.3.
  • Shape-Memory Polymers
  • Tram T. Dang
  • Ali Khademhosseini
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 19.6.
  • Conclusion and Perspectives
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • Acknowledgments
  • Adnan Memic
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • References
  • Tram T. Dang
  • Ali Khademhosseini
  • Adnan Memic
  • Mehdi Nikkhah
  • 20.1.
  • Mehdi Nikkhah
  • Introduction
  • Diane J. Burgess
  • Bing Gu
  • 20.2.
  • Mechanical/Thermal Properties of Polymers
  • Diane J. Burgess
  • Bing Gu
  • 20.2.1.
  • Stress-Strain
  • Diane J. Burgess
  • 19.4.
  • Bing Gu
  • 20.2.2.
  • Viscoelastic
  • Diane J. Burgess
  • Bing Gu
  • 20.2.3.
  • Differential Scanning Calorimetry
  • Diane J. Burgess
  • Bing Gu
  • 20.3.
Control code
869281815
Dimensions
unknown
Edition
First edition.
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9780123972903
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)869281815

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...