The Resource Optimizing Thermal, Chemical, and Environmental Systems
Optimizing Thermal, Chemical, and Environmental Systems
Resource Information
The item Optimizing Thermal, Chemical, and Environmental Systems represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Optimizing Thermal, Chemical, and Environmental Systems represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (454 pages)
- Note
- ""3.7.2 Comparison of the Measured and Calculated Values""
- Contents
-
- Front Cover -- Optimizing Thermal, Chemical, and Environmental Systems -- Optimizing Thermal, Chemical, and Environmental Systems -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 -- Outline of Classical Optimization Methods -- 1.1 Applying Mathematical and Engineering Knowledge in Optimization -- 1.2 Unconstrained Problems for Function of Several Variables -- 1.3 Equality Constraints and Lagrange Multipliers -- 1.4 Methods of Mathematical Programming -- 1.5 Methods of Dynamic Optimization -- 1.6 Iterative Search Approaches
- 1.7 Some Stochastic Optimization Techniques1.7.1 Introduction -- 1.7.2 Adaptive Random Search Optimization -- 1.7.3 Genetic Algorithms -- 1.7.4 Simulated Annealing -- 1.7.4.1 Acceptance Criterion -- 1.7.4.2 Initial Simplex Generation -- 1.7.4.3 Determination of Initial Temperature -- 1.7.4.4 Temperature Decreaseâ#x80;#x94;Cooling Scheme -- 1.7.4.5 Equilibrium Conditionâ#x80;#x94;Point (6) of the General Algorithm -- 1.7.4.6 Stopping (Convergence) Criterion -- 1.7.4.7 Control Parameters Settings -- 1.7.5 Handling Equality Constraints in ARS, GA, and SA -- References
- Further Reading2 -- Finite Rate Optimization of Steady Thermal Units -- 2.1 Optimization Syntheses Toward Thermodynamic Limits -- 2.1.1 Introduction: Aims, Scope, and Basic Notions -- 2.1.2 Significance of Thermodynamic Analyses -- 2.1.3 Power Optimization and Finite Resources -- 2.1.4 Static Limits for Power Yield -- 2.1.5 Integral Power and Discrete Dynamical Systems -- 2.1.6 Dynamical Limits, Non-Carnot Efficiencies, and Finite Rate Exergies -- 2.1.7 Approximate Treatment of Internal Dissipation -- 2.1.8 Brief Comment on Viscosity Solutions
- 2.2 Maximizing Power Produced by a Finite Resource at Flow2.2.1 Characteristics of Steady Systems with Maximum Power -- 2.2.2 Discrete Modeling of Unsteady (Dynamical) Systems -- 2.2.3 Two Basic Works and Finite-Rate Exergies -- 2.3 Maximizing Cumulative Power -- 2.3.1 Power Systems Treated by HJB Equations -- 2.3.2 Systems With Pseudo-Newtonian Kinetics -- 2.3.3 Potential Functions for Quasilinear Kinetics -- 2.4 Discussion and Concluding Remarks -- References -- 3 -- Neural Networks for Emission Prediction of Dust Pollutants -- 3.1 Introduction
- 3.1.1 Significance of Pollution Reduction3.1.2 Atmospheric Air -- 3.1.3 Dusts -- 3.1.4 Quantitative Aspects of Pollution Emission -- 3.1.4.1 Direct Measurement of Pollution Emission -- 3.1.4.2 Mathematical Simulations of Pollution Emission -- 3.1.5 Management of Environmental Protection -- 3.2 Aims, Scope, and Assumptions -- 3.3 Experimental Data -- 3.4 Artificial Neural Networks -- 3.5 Emission Prediction With Multilayer Perceptron Method -- 3.6 Working Parameters of the Artificial Neural Network Model -- 3.7 Prediction Results -- 3.7.1 Statistical Estimates
- Isbn
- 9780128135839
- Label
- Optimizing Thermal, Chemical, and Environmental Systems
- Title
- Optimizing Thermal, Chemical, and Environmental Systems
- Language
- eng
- Summary
- Annotation
- Cataloging source
- EBLCP
- http://library.link/vocab/creatorName
- Sieniutycz, Stanislaw
- Dewey number
- 621.402
- Index
- no index present
- LC call number
- TJ260
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/relatedWorkOrContributorName
- Szwast, Zbigniew
- http://library.link/vocab/subjectName
-
- Heat engineering
- Chemical engineering
- Environmental engineering
- Engineering design
- Chemical engineering
- Engineering design
- Environmental engineering
- Heat engineering
- Summary expansion
- 'Optimizing Thermal, Chemical and Environmental Systems' treats the evaluation of power or energy limits for processes that arise in various thermal, chemical and environmental engineering systems (heat and mass exchangers, power converters, recovery units, solar collectors, mixture separators, chemical reactors, catalyst regenerators, etc.). The book is an indispensable source for researchers and students, providing the necessary information on what has been achieved to date in the field of process optimization, new research problems, and what kind of further studies should be developed within quite specialized optimizations
- Label
- Optimizing Thermal, Chemical, and Environmental Systems
- Note
- ""3.7.2 Comparison of the Measured and Calculated Values""
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Front Cover -- Optimizing Thermal, Chemical, and Environmental Systems -- Optimizing Thermal, Chemical, and Environmental Systems -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 -- Outline of Classical Optimization Methods -- 1.1 Applying Mathematical and Engineering Knowledge in Optimization -- 1.2 Unconstrained Problems for Function of Several Variables -- 1.3 Equality Constraints and Lagrange Multipliers -- 1.4 Methods of Mathematical Programming -- 1.5 Methods of Dynamic Optimization -- 1.6 Iterative Search Approaches
- 1.7 Some Stochastic Optimization Techniques1.7.1 Introduction -- 1.7.2 Adaptive Random Search Optimization -- 1.7.3 Genetic Algorithms -- 1.7.4 Simulated Annealing -- 1.7.4.1 Acceptance Criterion -- 1.7.4.2 Initial Simplex Generation -- 1.7.4.3 Determination of Initial Temperature -- 1.7.4.4 Temperature Decreaseâ#x80;#x94;Cooling Scheme -- 1.7.4.5 Equilibrium Conditionâ#x80;#x94;Point (6) of the General Algorithm -- 1.7.4.6 Stopping (Convergence) Criterion -- 1.7.4.7 Control Parameters Settings -- 1.7.5 Handling Equality Constraints in ARS, GA, and SA -- References
- Further Reading2 -- Finite Rate Optimization of Steady Thermal Units -- 2.1 Optimization Syntheses Toward Thermodynamic Limits -- 2.1.1 Introduction: Aims, Scope, and Basic Notions -- 2.1.2 Significance of Thermodynamic Analyses -- 2.1.3 Power Optimization and Finite Resources -- 2.1.4 Static Limits for Power Yield -- 2.1.5 Integral Power and Discrete Dynamical Systems -- 2.1.6 Dynamical Limits, Non-Carnot Efficiencies, and Finite Rate Exergies -- 2.1.7 Approximate Treatment of Internal Dissipation -- 2.1.8 Brief Comment on Viscosity Solutions
- 2.2 Maximizing Power Produced by a Finite Resource at Flow2.2.1 Characteristics of Steady Systems with Maximum Power -- 2.2.2 Discrete Modeling of Unsteady (Dynamical) Systems -- 2.2.3 Two Basic Works and Finite-Rate Exergies -- 2.3 Maximizing Cumulative Power -- 2.3.1 Power Systems Treated by HJB Equations -- 2.3.2 Systems With Pseudo-Newtonian Kinetics -- 2.3.3 Potential Functions for Quasilinear Kinetics -- 2.4 Discussion and Concluding Remarks -- References -- 3 -- Neural Networks for Emission Prediction of Dust Pollutants -- 3.1 Introduction
- 3.1.1 Significance of Pollution Reduction3.1.2 Atmospheric Air -- 3.1.3 Dusts -- 3.1.4 Quantitative Aspects of Pollution Emission -- 3.1.4.1 Direct Measurement of Pollution Emission -- 3.1.4.2 Mathematical Simulations of Pollution Emission -- 3.1.5 Management of Environmental Protection -- 3.2 Aims, Scope, and Assumptions -- 3.3 Experimental Data -- 3.4 Artificial Neural Networks -- 3.5 Emission Prediction With Multilayer Perceptron Method -- 3.6 Working Parameters of the Artificial Neural Network Model -- 3.7 Prediction Results -- 3.7.1 Statistical Estimates
- Control code
- 1012343155
- Dimensions
- unknown
- Extent
- 1 online resource (454 pages)
- Form of item
- online
- Isbn
- 9780128135839
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- http://library.link/vocab/ext/overdrive/overdriveId
- 9780128135839
- Specific material designation
- remote
- System control number
- (OCoLC)1012343155
- Label
- Optimizing Thermal, Chemical, and Environmental Systems
- Note
- ""3.7.2 Comparison of the Measured and Calculated Values""
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Front Cover -- Optimizing Thermal, Chemical, and Environmental Systems -- Optimizing Thermal, Chemical, and Environmental Systems -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 -- Outline of Classical Optimization Methods -- 1.1 Applying Mathematical and Engineering Knowledge in Optimization -- 1.2 Unconstrained Problems for Function of Several Variables -- 1.3 Equality Constraints and Lagrange Multipliers -- 1.4 Methods of Mathematical Programming -- 1.5 Methods of Dynamic Optimization -- 1.6 Iterative Search Approaches
- 1.7 Some Stochastic Optimization Techniques1.7.1 Introduction -- 1.7.2 Adaptive Random Search Optimization -- 1.7.3 Genetic Algorithms -- 1.7.4 Simulated Annealing -- 1.7.4.1 Acceptance Criterion -- 1.7.4.2 Initial Simplex Generation -- 1.7.4.3 Determination of Initial Temperature -- 1.7.4.4 Temperature Decreaseâ#x80;#x94;Cooling Scheme -- 1.7.4.5 Equilibrium Conditionâ#x80;#x94;Point (6) of the General Algorithm -- 1.7.4.6 Stopping (Convergence) Criterion -- 1.7.4.7 Control Parameters Settings -- 1.7.5 Handling Equality Constraints in ARS, GA, and SA -- References
- Further Reading2 -- Finite Rate Optimization of Steady Thermal Units -- 2.1 Optimization Syntheses Toward Thermodynamic Limits -- 2.1.1 Introduction: Aims, Scope, and Basic Notions -- 2.1.2 Significance of Thermodynamic Analyses -- 2.1.3 Power Optimization and Finite Resources -- 2.1.4 Static Limits for Power Yield -- 2.1.5 Integral Power and Discrete Dynamical Systems -- 2.1.6 Dynamical Limits, Non-Carnot Efficiencies, and Finite Rate Exergies -- 2.1.7 Approximate Treatment of Internal Dissipation -- 2.1.8 Brief Comment on Viscosity Solutions
- 2.2 Maximizing Power Produced by a Finite Resource at Flow2.2.1 Characteristics of Steady Systems with Maximum Power -- 2.2.2 Discrete Modeling of Unsteady (Dynamical) Systems -- 2.2.3 Two Basic Works and Finite-Rate Exergies -- 2.3 Maximizing Cumulative Power -- 2.3.1 Power Systems Treated by HJB Equations -- 2.3.2 Systems With Pseudo-Newtonian Kinetics -- 2.3.3 Potential Functions for Quasilinear Kinetics -- 2.4 Discussion and Concluding Remarks -- References -- 3 -- Neural Networks for Emission Prediction of Dust Pollutants -- 3.1 Introduction
- 3.1.1 Significance of Pollution Reduction3.1.2 Atmospheric Air -- 3.1.3 Dusts -- 3.1.4 Quantitative Aspects of Pollution Emission -- 3.1.4.1 Direct Measurement of Pollution Emission -- 3.1.4.2 Mathematical Simulations of Pollution Emission -- 3.1.5 Management of Environmental Protection -- 3.2 Aims, Scope, and Assumptions -- 3.3 Experimental Data -- 3.4 Artificial Neural Networks -- 3.5 Emission Prediction With Multilayer Perceptron Method -- 3.6 Working Parameters of the Artificial Neural Network Model -- 3.7 Prediction Results -- 3.7.1 Statistical Estimates
- Control code
- 1012343155
- Dimensions
- unknown
- Extent
- 1 online resource (454 pages)
- Form of item
- online
- Isbn
- 9780128135839
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- http://library.link/vocab/ext/overdrive/overdriveId
- 9780128135839
- Specific material designation
- remote
- System control number
- (OCoLC)1012343155
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Optimizing-Thermal-Chemical-and-Environmental/A827A6Vuzyo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Optimizing-Thermal-Chemical-and-Environmental/A827A6Vuzyo/">Optimizing Thermal, Chemical, and Environmental Systems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Optimizing Thermal, Chemical, and Environmental Systems
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Optimizing-Thermal-Chemical-and-Environmental/A827A6Vuzyo/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Optimizing-Thermal-Chemical-and-Environmental/A827A6Vuzyo/">Optimizing Thermal, Chemical, and Environmental Systems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>