The Resource Polymers for energy storage and conversion, edited by Vikas Mittal
Polymers for energy storage and conversion, edited by Vikas Mittal
Resource Information
The item Polymers for energy storage and conversion, edited by Vikas Mittal represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Polymers for energy storage and conversion, edited by Vikas Mittal represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the polymer molecular structure control thereby tuning of the polymer properties have led to these applications. This book assimilates these advances in the form of a comprehensive text which includes the synthesis and properties of a large number of polymer systems for applications in the areas of lithium batteries, photovoltaics, solar cells, etc. Polymers for Energy Storage and Conversion describes: PVAc-based polymer blend electrolytes for
- Language
- eng
- Extent
- 1 online resource (xiv, 253 pages)
- Contents
-
- Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- 1 High Performance Polymer Hydrogel Based Materials for Fuel Cells -- 1.1 Introduction -- 1.2 Hydrogel Electrolyte -- 1.3 Poly(vinyl alcohol) Hydrogel -- 1.3.1 Chitosan-based Hydrogel in Fuel Cells -- 1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell -- 1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell -- 1.3.4 Chitosan for Fuel Cell Electrode -- Summary -- References -- 2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries -- 2.1 Introduction -- 2.1.1 Polymer Electrolytes -- 2.1.2 Role of Polymers in Electrolyte -- 2.1.3 Polymers -- 2.1.4 Advantages of Polymer Electrolytes in Battery -- 2.1.5 Poly Vinyl Acetate (PVAc) -- 2.1.6 PVAc Based Polymer Electrolytes -- 2.1.7 Surface and Structural Analysis -- Conclusion -- References -- 3 Lithium Polymer Batteries Based on Ionic Liquids -- 3.1 Lithium Batteries -- 3.1.1 Introduction -- 3.1.2 Lithium Polymer Batteries -- 3.2 Lithium Polymer Batteries Containing Ionic Liquids -- 3.2.1 Ionic Liquids -- 3.2.2 Ionic Liquid-Based Polymer Electrolytes -- 3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance -- Glossary -- References -- 4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics -- 4.1 Introduction -- 4.2 Molecular Layer Deposition -- 4.3 Concept of Solar Cells with Organic Quantum Dots -- 4.4 Polymer Multiple Quantum Dots -- 4.4.1 Fabrication Process and Structures -- 4.4.2 Structural Confirmation of Polymer MQDs -- 4.4.3 Photocurrent Spectra -- 4.4.4 MLD on TiO2 Layer -- 4.5 Molecular Multiple Quantum Dots -- 4.5.1 Fabrication Process and Structures -- 4.5.2 Structural Confirmation of Molecular MQDs -- 4.5.3 Photocurrent Spectra -- 4.6 Waveguide-Type Solar Cells -- 4.6.1 Proposed Structures -- 4.6.2 Photocurrent Enhancement by Guided Lights
- 4.6.3 Film-Based Integrated Solar Cells -- 4.7 Summary -- References -- 5 Solvent Effects in Polymer Based Organic Photovoltaics -- 5.1 Introduction -- 5.2 Solar Cell Device Structure and Prepartion -- 5.3 Spin-Coating of Active Layer -- 5.4 Influence of Solvent on Morphology -- 5.4.1 Crystallization Process and Cluster Formation -- 5.4.2 Lateral Structures -- 5.4.3 Vertical Material Composition -- 5.4.4 Mesoscopic Morphology -- 5.5 Residual Solvent -- 5.5.1 Absolute Solvent Content in Homopolymer Films -- 5.5.2 Lateral Solvent Distribution -- 5.6 Summary -- Acknowledgment -- References -- 6 Polymer-Inorganic Hybrid Solar Cells -- 6.1 Introduction -- 6.1.1 Hybrid Solar Cell -- 6.1.2 Semiconducting Conjugated Polymers -- 6.1.3 Inorganic Semiconductors -- 6.1.4 Solar Cell Device Characterization -- 6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites -- 6.2.1 Inorganic Semiconductor in a Bilayer Structure -- 6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer -- 6.2.3 Inorganic Metal Oxide as Charge Transport Layer -- 6.3 Conclusion -- References -- 7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells -- 7.1 Introduction -- 7.2 Optical Properties of Semiconducting Polymers -- 7.3 Electrical Properties of Semiconducting Polymers -- 7.4 Mechanical Properties Polymer Solar Cells -- 7.5 Processing of Polymers -- 7.6 State-of-the-art of the Technology -- References -- 8 Energy Gas Storage in Porous Polymers -- 8.1 Introduction -- 8.2 Microporous Organic Polymers -- 8.2.1 Polymer of Intrinsic Microporosity -- 8.2.2 Conjugated Microporous Polymers -- 8.2.3 Hypercrosslinked Polymer -- 8.2.4 Covalent Organic Frameworks -- 8.3 Characterization of MOPs -- Conclusion -- List of Abbreviation -- References -- Index
- Isbn
- 9781118734209
- Label
- Polymers for energy storage and conversion
- Title
- Polymers for energy storage and conversion
- Statement of responsibility
- edited by Vikas Mittal
- Subject
-
- SCIENCE -- Chemistry | Physical & Theoretical
- Conducting polymers
- Conducting polymers
- Electric batteries
- Electric batteries
- Electric insulators and insulation -- Polymers
- Electric insulators and insulation -- Polymers
- Electronic books
- Electronic books
- Polyelectrolytes
- Polyelectrolytes
- Polymers
- Polymers
- Polymers -- Electric properties
- Polymers -- Electric properties
- Language
- eng
- Summary
- Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the polymer molecular structure control thereby tuning of the polymer properties have led to these applications. This book assimilates these advances in the form of a comprehensive text which includes the synthesis and properties of a large number of polymer systems for applications in the areas of lithium batteries, photovoltaics, solar cells, etc. Polymers for Energy Storage and Conversion describes: PVAc-based polymer blend electrolytes for
- Cataloging source
- E7B
- Dewey number
- 541/.372
- Illustrations
-
- illustrations
- charts
- Index
- index present
- LC call number
- QD382.C66
- LC item number
- P65 2013eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Mittal, Vikas
- Series statement
- Polymer science and plastics engineering
- http://library.link/vocab/subjectName
-
- Conducting polymers
- Polyelectrolytes
- Electric insulators and insulation
- Polymers
- Polymers
- Electric batteries
- SCIENCE
- Conducting polymers
- Electric batteries
- Electric insulators and insulation
- Polyelectrolytes
- Polymers
- Polymers
- Label
- Polymers for energy storage and conversion, edited by Vikas Mittal
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- 1 High Performance Polymer Hydrogel Based Materials for Fuel Cells -- 1.1 Introduction -- 1.2 Hydrogel Electrolyte -- 1.3 Poly(vinyl alcohol) Hydrogel -- 1.3.1 Chitosan-based Hydrogel in Fuel Cells -- 1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell -- 1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell -- 1.3.4 Chitosan for Fuel Cell Electrode -- Summary -- References -- 2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries -- 2.1 Introduction -- 2.1.1 Polymer Electrolytes -- 2.1.2 Role of Polymers in Electrolyte -- 2.1.3 Polymers -- 2.1.4 Advantages of Polymer Electrolytes in Battery -- 2.1.5 Poly Vinyl Acetate (PVAc) -- 2.1.6 PVAc Based Polymer Electrolytes -- 2.1.7 Surface and Structural Analysis -- Conclusion -- References -- 3 Lithium Polymer Batteries Based on Ionic Liquids -- 3.1 Lithium Batteries -- 3.1.1 Introduction -- 3.1.2 Lithium Polymer Batteries -- 3.2 Lithium Polymer Batteries Containing Ionic Liquids -- 3.2.1 Ionic Liquids -- 3.2.2 Ionic Liquid-Based Polymer Electrolytes -- 3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance -- Glossary -- References -- 4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics -- 4.1 Introduction -- 4.2 Molecular Layer Deposition -- 4.3 Concept of Solar Cells with Organic Quantum Dots -- 4.4 Polymer Multiple Quantum Dots -- 4.4.1 Fabrication Process and Structures -- 4.4.2 Structural Confirmation of Polymer MQDs -- 4.4.3 Photocurrent Spectra -- 4.4.4 MLD on TiO2 Layer -- 4.5 Molecular Multiple Quantum Dots -- 4.5.1 Fabrication Process and Structures -- 4.5.2 Structural Confirmation of Molecular MQDs -- 4.5.3 Photocurrent Spectra -- 4.6 Waveguide-Type Solar Cells -- 4.6.1 Proposed Structures -- 4.6.2 Photocurrent Enhancement by Guided Lights
- 4.6.3 Film-Based Integrated Solar Cells -- 4.7 Summary -- References -- 5 Solvent Effects in Polymer Based Organic Photovoltaics -- 5.1 Introduction -- 5.2 Solar Cell Device Structure and Prepartion -- 5.3 Spin-Coating of Active Layer -- 5.4 Influence of Solvent on Morphology -- 5.4.1 Crystallization Process and Cluster Formation -- 5.4.2 Lateral Structures -- 5.4.3 Vertical Material Composition -- 5.4.4 Mesoscopic Morphology -- 5.5 Residual Solvent -- 5.5.1 Absolute Solvent Content in Homopolymer Films -- 5.5.2 Lateral Solvent Distribution -- 5.6 Summary -- Acknowledgment -- References -- 6 Polymer-Inorganic Hybrid Solar Cells -- 6.1 Introduction -- 6.1.1 Hybrid Solar Cell -- 6.1.2 Semiconducting Conjugated Polymers -- 6.1.3 Inorganic Semiconductors -- 6.1.4 Solar Cell Device Characterization -- 6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites -- 6.2.1 Inorganic Semiconductor in a Bilayer Structure -- 6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer -- 6.2.3 Inorganic Metal Oxide as Charge Transport Layer -- 6.3 Conclusion -- References -- 7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells -- 7.1 Introduction -- 7.2 Optical Properties of Semiconducting Polymers -- 7.3 Electrical Properties of Semiconducting Polymers -- 7.4 Mechanical Properties Polymer Solar Cells -- 7.5 Processing of Polymers -- 7.6 State-of-the-art of the Technology -- References -- 8 Energy Gas Storage in Porous Polymers -- 8.1 Introduction -- 8.2 Microporous Organic Polymers -- 8.2.1 Polymer of Intrinsic Microporosity -- 8.2.2 Conjugated Microporous Polymers -- 8.2.3 Hypercrosslinked Polymer -- 8.2.4 Covalent Organic Frameworks -- 8.3 Characterization of MOPs -- Conclusion -- List of Abbreviation -- References -- Index
- Control code
- 849920571
- Dimensions
- unknown
- Extent
- 1 online resource (xiv, 253 pages)
- Form of item
- online
- Isbn
- 9781118734209
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)849920571
- Label
- Polymers for energy storage and conversion, edited by Vikas Mittal
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- 1 High Performance Polymer Hydrogel Based Materials for Fuel Cells -- 1.1 Introduction -- 1.2 Hydrogel Electrolyte -- 1.3 Poly(vinyl alcohol) Hydrogel -- 1.3.1 Chitosan-based Hydrogel in Fuel Cells -- 1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell -- 1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell -- 1.3.4 Chitosan for Fuel Cell Electrode -- Summary -- References -- 2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries -- 2.1 Introduction -- 2.1.1 Polymer Electrolytes -- 2.1.2 Role of Polymers in Electrolyte -- 2.1.3 Polymers -- 2.1.4 Advantages of Polymer Electrolytes in Battery -- 2.1.5 Poly Vinyl Acetate (PVAc) -- 2.1.6 PVAc Based Polymer Electrolytes -- 2.1.7 Surface and Structural Analysis -- Conclusion -- References -- 3 Lithium Polymer Batteries Based on Ionic Liquids -- 3.1 Lithium Batteries -- 3.1.1 Introduction -- 3.1.2 Lithium Polymer Batteries -- 3.2 Lithium Polymer Batteries Containing Ionic Liquids -- 3.2.1 Ionic Liquids -- 3.2.2 Ionic Liquid-Based Polymer Electrolytes -- 3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance -- Glossary -- References -- 4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics -- 4.1 Introduction -- 4.2 Molecular Layer Deposition -- 4.3 Concept of Solar Cells with Organic Quantum Dots -- 4.4 Polymer Multiple Quantum Dots -- 4.4.1 Fabrication Process and Structures -- 4.4.2 Structural Confirmation of Polymer MQDs -- 4.4.3 Photocurrent Spectra -- 4.4.4 MLD on TiO2 Layer -- 4.5 Molecular Multiple Quantum Dots -- 4.5.1 Fabrication Process and Structures -- 4.5.2 Structural Confirmation of Molecular MQDs -- 4.5.3 Photocurrent Spectra -- 4.6 Waveguide-Type Solar Cells -- 4.6.1 Proposed Structures -- 4.6.2 Photocurrent Enhancement by Guided Lights
- 4.6.3 Film-Based Integrated Solar Cells -- 4.7 Summary -- References -- 5 Solvent Effects in Polymer Based Organic Photovoltaics -- 5.1 Introduction -- 5.2 Solar Cell Device Structure and Prepartion -- 5.3 Spin-Coating of Active Layer -- 5.4 Influence of Solvent on Morphology -- 5.4.1 Crystallization Process and Cluster Formation -- 5.4.2 Lateral Structures -- 5.4.3 Vertical Material Composition -- 5.4.4 Mesoscopic Morphology -- 5.5 Residual Solvent -- 5.5.1 Absolute Solvent Content in Homopolymer Films -- 5.5.2 Lateral Solvent Distribution -- 5.6 Summary -- Acknowledgment -- References -- 6 Polymer-Inorganic Hybrid Solar Cells -- 6.1 Introduction -- 6.1.1 Hybrid Solar Cell -- 6.1.2 Semiconducting Conjugated Polymers -- 6.1.3 Inorganic Semiconductors -- 6.1.4 Solar Cell Device Characterization -- 6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites -- 6.2.1 Inorganic Semiconductor in a Bilayer Structure -- 6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer -- 6.2.3 Inorganic Metal Oxide as Charge Transport Layer -- 6.3 Conclusion -- References -- 7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells -- 7.1 Introduction -- 7.2 Optical Properties of Semiconducting Polymers -- 7.3 Electrical Properties of Semiconducting Polymers -- 7.4 Mechanical Properties Polymer Solar Cells -- 7.5 Processing of Polymers -- 7.6 State-of-the-art of the Technology -- References -- 8 Energy Gas Storage in Porous Polymers -- 8.1 Introduction -- 8.2 Microporous Organic Polymers -- 8.2.1 Polymer of Intrinsic Microporosity -- 8.2.2 Conjugated Microporous Polymers -- 8.2.3 Hypercrosslinked Polymer -- 8.2.4 Covalent Organic Frameworks -- 8.3 Characterization of MOPs -- Conclusion -- List of Abbreviation -- References -- Index
- Control code
- 849920571
- Dimensions
- unknown
- Extent
- 1 online resource (xiv, 253 pages)
- Form of item
- online
- Isbn
- 9781118734209
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)849920571
Subject
- SCIENCE -- Chemistry | Physical & Theoretical
- Conducting polymers
- Conducting polymers
- Electric batteries
- Electric batteries
- Electric insulators and insulation -- Polymers
- Electric insulators and insulation -- Polymers
- Electronic books
- Electronic books
- Polyelectrolytes
- Polyelectrolytes
- Polymers
- Polymers
- Polymers -- Electric properties
- Polymers -- Electric properties
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Polymers-for-energy-storage-and-conversion/VTZ07keMEzQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Polymers-for-energy-storage-and-conversion/VTZ07keMEzQ/">Polymers for energy storage and conversion, edited by Vikas Mittal</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Polymers for energy storage and conversion, edited by Vikas Mittal
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Polymers-for-energy-storage-and-conversion/VTZ07keMEzQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Polymers-for-energy-storage-and-conversion/VTZ07keMEzQ/">Polymers for energy storage and conversion, edited by Vikas Mittal</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>