Coverart for item
The Resource Protein-ligand interactions, edited by Holger Gohlke

Protein-ligand interactions, edited by Holger Gohlke

Label
Protein-ligand interactions
Title
Protein-ligand interactions
Statement of responsibility
edited by Holger Gohlke
Contributor
Subject
Language
eng
Summary
Innovative and forward-looking, this volume focuses on recent achievements in this rapidly progressing field and looks at future potential for development. The first part provides a basic understanding of the factors governing protein-ligand interaction, followed by a comparison of the four key experimental methods (calorimetry, surface plasmon resonance, NMR and X-ray crystallography) used in generating interaction data. The second half of the book is devoted to in-silico methods of modeling and predicting molecular recognition and binding. Here, as elsewhere in the book, emphasis is placed on novel approaches and recent improvements to established methods. The final part looks at unresolved challenges, and the strategies to address them
Member of
Cataloging source
EBLCP
Dewey number
615.19
Illustrations
illustrations
Index
index present
LC call number
QP551
LC item number
.P69598 2012
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
  • W1
  • QU 55
NLM item number
ME9613H v.53 2012
http://library.link/vocab/relatedWorkOrContributorName
Gohlke, Holger
Series statement
Methods and principles in medicinal chemistry
Series volume
v. 53
http://library.link/vocab/subjectName
  • Proteins
  • Ligands (Biochemistry)
  • Ligand binding (Biochemistry)
  • Drugs
  • Ligands
  • Proteins
  • Chemistry Techniques, Analytical
  • Carrier Proteins
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • MEDICAL
  • Drugs
  • Ligand binding (Biochemistry)
  • Ligands (Biochemistry)
  • Proteins
  • Ligand
  • Proteine
  • Wechselwirkung
Label
Protein-ligand interactions, edited by Holger Gohlke
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Protein-Ligand Interactions; Contents; List of Contributors; Preface; A Personal Foreword; Part I: Binding Thermodynamics; 1 Statistical Thermodynamics of Binding and Molecular Recognition Models; 1.1 Introductory Remarks; 1.2 The Binding Constant and Free Energy; 1.3 A Statistical Mechanical Treatment of Binding; 1.3.1 Binding in a Square Well Potential; 1.3.2 Binding in a Harmonic Potential; 1.4 Strategies for Calculating Binding Free Energies; 1.4.1 Direct Association Simulations; 1.4.2 The Quasi-Harmonic Approximation; 1.4.3 Estimation of Entropy Contributions to Binding
  • 1.4.4 The MoleculeMechanics Poisson-Boltzmann Surface AreaMethod1.4.5 Thermodynamic Work Methods; 1.4.6 Ligand Decoupling; 1.4.7 Linear Interaction Methods; 1.4.8 Salt Effects on Binding; 1.4.9 Statistical Potentials; 1.4.10 Empirical Potentials; References; 2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates; 2.1 Engineering Binding Contributions; 2.2 Eliminating Unfavorable Enthalpy; 2.3 Improving Binding Enthalpy; 2.4 Improving Binding Affinity; 2.5 Improving Selectivity; 2.6 Thermodynamic Optimization Plot; Acknowledgments; References
  • 3 Enthalpy-Entropy Compensation as Deduced from Measurements of Temperature Dependence3.1 Introduction; 3.2 The Current Status of Enthalpy-Entropy Compensation; 3.3 Measurement of the Entropy and Enthalpy of Activation; 3.4 An Example; 3.5 The Compensation Temperature; 3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy; 3.7 Evolutionary Considerations; 3.8 Textbooks; References; Part II: Learning from Biophysical Experiments; 4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization
  • 4.1 Background4.2 SPR Biosensor Technology; 4.2.1 Principles; 4.2.2 Sensitivity; 4.2.3 Kinetic Resolution; 4.2.4 Performance for Drug Discovery; 4.3 From Interaction Models to Kinetic Rate Constants and Affinity; 4.3.1 Determination of Interaction Kinetic Rate Constants; 4.3.2 Determination of Affinities; 4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams; 4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions; 4.5 From Models to Mechanisms; 4.5.1 Irreversible Interactions; 4.5.2 Induced Fit; 4.5.3 Conformational Selection
  • 4.5.4 Unified Model for Dynamic Targets4.5.5 Heterogeneous Systems/Parallel Reactions; 4.5.6 Mechanism-Based Inhibitors; 4.5.7 Multiple Binding Sites and Influence of Cofactors; 4.6 Structural Information; 4.7 The Use of Kinetic Rate Constants in Lead Generation and Optimization; 4.7.1 Structure-Kinetic Relationships; 4.7.2 Selectivity/Specificity and Resistance; 4.7.3 Chemodynamics; 4.7.4 Thermodynamics; 4.8 Designing Compounds with Optimal Properties; 4.8.1 Correlation between Kinetic and Thermodynamic Parameters and Pharmacological Efficacy; 4.8.2 Structural Modeling; 4.9 Conclusions
Control code
787843753
Dimensions
unknown
Extent
1 online resource (xx, 339 pages)
File format
unknown
Form of item
online
Isbn
9783527645947
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
10.1002/9783527645947
Publisher number
Best.-Nr.: 1132966 000
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)787843753
Label
Protein-ligand interactions, edited by Holger Gohlke
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Protein-Ligand Interactions; Contents; List of Contributors; Preface; A Personal Foreword; Part I: Binding Thermodynamics; 1 Statistical Thermodynamics of Binding and Molecular Recognition Models; 1.1 Introductory Remarks; 1.2 The Binding Constant and Free Energy; 1.3 A Statistical Mechanical Treatment of Binding; 1.3.1 Binding in a Square Well Potential; 1.3.2 Binding in a Harmonic Potential; 1.4 Strategies for Calculating Binding Free Energies; 1.4.1 Direct Association Simulations; 1.4.2 The Quasi-Harmonic Approximation; 1.4.3 Estimation of Entropy Contributions to Binding
  • 1.4.4 The MoleculeMechanics Poisson-Boltzmann Surface AreaMethod1.4.5 Thermodynamic Work Methods; 1.4.6 Ligand Decoupling; 1.4.7 Linear Interaction Methods; 1.4.8 Salt Effects on Binding; 1.4.9 Statistical Potentials; 1.4.10 Empirical Potentials; References; 2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates; 2.1 Engineering Binding Contributions; 2.2 Eliminating Unfavorable Enthalpy; 2.3 Improving Binding Enthalpy; 2.4 Improving Binding Affinity; 2.5 Improving Selectivity; 2.6 Thermodynamic Optimization Plot; Acknowledgments; References
  • 3 Enthalpy-Entropy Compensation as Deduced from Measurements of Temperature Dependence3.1 Introduction; 3.2 The Current Status of Enthalpy-Entropy Compensation; 3.3 Measurement of the Entropy and Enthalpy of Activation; 3.4 An Example; 3.5 The Compensation Temperature; 3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy; 3.7 Evolutionary Considerations; 3.8 Textbooks; References; Part II: Learning from Biophysical Experiments; 4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization
  • 4.1 Background4.2 SPR Biosensor Technology; 4.2.1 Principles; 4.2.2 Sensitivity; 4.2.3 Kinetic Resolution; 4.2.4 Performance for Drug Discovery; 4.3 From Interaction Models to Kinetic Rate Constants and Affinity; 4.3.1 Determination of Interaction Kinetic Rate Constants; 4.3.2 Determination of Affinities; 4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams; 4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions; 4.5 From Models to Mechanisms; 4.5.1 Irreversible Interactions; 4.5.2 Induced Fit; 4.5.3 Conformational Selection
  • 4.5.4 Unified Model for Dynamic Targets4.5.5 Heterogeneous Systems/Parallel Reactions; 4.5.6 Mechanism-Based Inhibitors; 4.5.7 Multiple Binding Sites and Influence of Cofactors; 4.6 Structural Information; 4.7 The Use of Kinetic Rate Constants in Lead Generation and Optimization; 4.7.1 Structure-Kinetic Relationships; 4.7.2 Selectivity/Specificity and Resistance; 4.7.3 Chemodynamics; 4.7.4 Thermodynamics; 4.8 Designing Compounds with Optimal Properties; 4.8.1 Correlation between Kinetic and Thermodynamic Parameters and Pharmacological Efficacy; 4.8.2 Structural Modeling; 4.9 Conclusions
Control code
787843753
Dimensions
unknown
Extent
1 online resource (xx, 339 pages)
File format
unknown
Form of item
online
Isbn
9783527645947
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
10.1002/9783527645947
Publisher number
Best.-Nr.: 1132966 000
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)787843753

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...