The Resource Protein-ligand interactions, edited by Holger Gohlke
Protein-ligand interactions, edited by Holger Gohlke
Resource Information
The item Protein-ligand interactions, edited by Holger Gohlke represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Protein-ligand interactions, edited by Holger Gohlke represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Summary
- Innovative and forward-looking, this volume focuses on recent achievements in this rapidly progressing field and looks at future potential for development. The first part provides a basic understanding of the factors governing protein-ligand interaction, followed by a comparison of the four key experimental methods (calorimetry, surface plasmon resonance, NMR and X-ray crystallography) used in generating interaction data. The second half of the book is devoted to in-silico methods of modeling and predicting molecular recognition and binding. Here, as elsewhere in the book, emphasis is placed on novel approaches and recent improvements to established methods. The final part looks at unresolved challenges, and the strategies to address them
- Language
- eng
- Extent
- 1 online resource (xx, 339 pages)
- Contents
-
- Protein-Ligand Interactions; Contents; List of Contributors; Preface; A Personal Foreword; Part I: Binding Thermodynamics; 1 Statistical Thermodynamics of Binding and Molecular Recognition Models; 1.1 Introductory Remarks; 1.2 The Binding Constant and Free Energy; 1.3 A Statistical Mechanical Treatment of Binding; 1.3.1 Binding in a Square Well Potential; 1.3.2 Binding in a Harmonic Potential; 1.4 Strategies for Calculating Binding Free Energies; 1.4.1 Direct Association Simulations; 1.4.2 The Quasi-Harmonic Approximation; 1.4.3 Estimation of Entropy Contributions to Binding
- 1.4.4 The MoleculeMechanics Poisson-Boltzmann Surface AreaMethod1.4.5 Thermodynamic Work Methods; 1.4.6 Ligand Decoupling; 1.4.7 Linear Interaction Methods; 1.4.8 Salt Effects on Binding; 1.4.9 Statistical Potentials; 1.4.10 Empirical Potentials; References; 2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates; 2.1 Engineering Binding Contributions; 2.2 Eliminating Unfavorable Enthalpy; 2.3 Improving Binding Enthalpy; 2.4 Improving Binding Affinity; 2.5 Improving Selectivity; 2.6 Thermodynamic Optimization Plot; Acknowledgments; References
- 3 Enthalpy-Entropy Compensation as Deduced from Measurements of Temperature Dependence3.1 Introduction; 3.2 The Current Status of Enthalpy-Entropy Compensation; 3.3 Measurement of the Entropy and Enthalpy of Activation; 3.4 An Example; 3.5 The Compensation Temperature; 3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy; 3.7 Evolutionary Considerations; 3.8 Textbooks; References; Part II: Learning from Biophysical Experiments; 4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization
- 4.1 Background4.2 SPR Biosensor Technology; 4.2.1 Principles; 4.2.2 Sensitivity; 4.2.3 Kinetic Resolution; 4.2.4 Performance for Drug Discovery; 4.3 From Interaction Models to Kinetic Rate Constants and Affinity; 4.3.1 Determination of Interaction Kinetic Rate Constants; 4.3.2 Determination of Affinities; 4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams; 4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions; 4.5 From Models to Mechanisms; 4.5.1 Irreversible Interactions; 4.5.2 Induced Fit; 4.5.3 Conformational Selection
- 4.5.4 Unified Model for Dynamic Targets4.5.5 Heterogeneous Systems/Parallel Reactions; 4.5.6 Mechanism-Based Inhibitors; 4.5.7 Multiple Binding Sites and Influence of Cofactors; 4.6 Structural Information; 4.7 The Use of Kinetic Rate Constants in Lead Generation and Optimization; 4.7.1 Structure-Kinetic Relationships; 4.7.2 Selectivity/Specificity and Resistance; 4.7.3 Chemodynamics; 4.7.4 Thermodynamics; 4.8 Designing Compounds with Optimal Properties; 4.8.1 Correlation between Kinetic and Thermodynamic Parameters and Pharmacological Efficacy; 4.8.2 Structural Modeling; 4.9 Conclusions
- Isbn
- 9783527645947
- Label
- Protein-ligand interactions
- Title
- Protein-ligand interactions
- Statement of responsibility
- edited by Holger Gohlke
- Subject
-
- Wechselwirkung
- Carrier Proteins
- Chemistry Techniques, Analytical -- methods
- Drugs -- Structure-activity relationships
- Drugs -- Structure-activity relationships
- Electronic book
- Electronic books
- Electronic books
- Ligand
- Ligand binding (Biochemistry)
- Ligand binding (Biochemistry)
- Ligands
- Ligands (Biochemistry)
- Ligands (Biochemistry)
- MEDICAL -- Drug Guides
- MEDICAL -- Nursing | Pharmacology
- MEDICAL -- Pharmacology
- MEDICAL -- Pharmacy
- Proteine
- Proteins
- Proteins
- Proteins -- pharmacokinetics
- Language
- eng
- Summary
- Innovative and forward-looking, this volume focuses on recent achievements in this rapidly progressing field and looks at future potential for development. The first part provides a basic understanding of the factors governing protein-ligand interaction, followed by a comparison of the four key experimental methods (calorimetry, surface plasmon resonance, NMR and X-ray crystallography) used in generating interaction data. The second half of the book is devoted to in-silico methods of modeling and predicting molecular recognition and binding. Here, as elsewhere in the book, emphasis is placed on novel approaches and recent improvements to established methods. The final part looks at unresolved challenges, and the strategies to address them
- Cataloging source
- EBLCP
- Dewey number
- 615.19
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QP551
- LC item number
- .P69598 2012
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- NLM call number
-
- W1
- QU 55
- NLM item number
- ME9613H v.53 2012
- http://library.link/vocab/relatedWorkOrContributorName
- Gohlke, Holger
- Series statement
- Methods and principles in medicinal chemistry
- Series volume
- v. 53
- http://library.link/vocab/subjectName
-
- Proteins
- Ligands (Biochemistry)
- Ligand binding (Biochemistry)
- Drugs
- Ligands
- Proteins
- Chemistry Techniques, Analytical
- Carrier Proteins
- MEDICAL
- MEDICAL
- MEDICAL
- MEDICAL
- Drugs
- Ligand binding (Biochemistry)
- Ligands (Biochemistry)
- Proteins
- Ligand
- Proteine
- Wechselwirkung
- Label
- Protein-ligand interactions, edited by Holger Gohlke
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Protein-Ligand Interactions; Contents; List of Contributors; Preface; A Personal Foreword; Part I: Binding Thermodynamics; 1 Statistical Thermodynamics of Binding and Molecular Recognition Models; 1.1 Introductory Remarks; 1.2 The Binding Constant and Free Energy; 1.3 A Statistical Mechanical Treatment of Binding; 1.3.1 Binding in a Square Well Potential; 1.3.2 Binding in a Harmonic Potential; 1.4 Strategies for Calculating Binding Free Energies; 1.4.1 Direct Association Simulations; 1.4.2 The Quasi-Harmonic Approximation; 1.4.3 Estimation of Entropy Contributions to Binding
- 1.4.4 The MoleculeMechanics Poisson-Boltzmann Surface AreaMethod1.4.5 Thermodynamic Work Methods; 1.4.6 Ligand Decoupling; 1.4.7 Linear Interaction Methods; 1.4.8 Salt Effects on Binding; 1.4.9 Statistical Potentials; 1.4.10 Empirical Potentials; References; 2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates; 2.1 Engineering Binding Contributions; 2.2 Eliminating Unfavorable Enthalpy; 2.3 Improving Binding Enthalpy; 2.4 Improving Binding Affinity; 2.5 Improving Selectivity; 2.6 Thermodynamic Optimization Plot; Acknowledgments; References
- 3 Enthalpy-Entropy Compensation as Deduced from Measurements of Temperature Dependence3.1 Introduction; 3.2 The Current Status of Enthalpy-Entropy Compensation; 3.3 Measurement of the Entropy and Enthalpy of Activation; 3.4 An Example; 3.5 The Compensation Temperature; 3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy; 3.7 Evolutionary Considerations; 3.8 Textbooks; References; Part II: Learning from Biophysical Experiments; 4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization
- 4.1 Background4.2 SPR Biosensor Technology; 4.2.1 Principles; 4.2.2 Sensitivity; 4.2.3 Kinetic Resolution; 4.2.4 Performance for Drug Discovery; 4.3 From Interaction Models to Kinetic Rate Constants and Affinity; 4.3.1 Determination of Interaction Kinetic Rate Constants; 4.3.2 Determination of Affinities; 4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams; 4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions; 4.5 From Models to Mechanisms; 4.5.1 Irreversible Interactions; 4.5.2 Induced Fit; 4.5.3 Conformational Selection
- 4.5.4 Unified Model for Dynamic Targets4.5.5 Heterogeneous Systems/Parallel Reactions; 4.5.6 Mechanism-Based Inhibitors; 4.5.7 Multiple Binding Sites and Influence of Cofactors; 4.6 Structural Information; 4.7 The Use of Kinetic Rate Constants in Lead Generation and Optimization; 4.7.1 Structure-Kinetic Relationships; 4.7.2 Selectivity/Specificity and Resistance; 4.7.3 Chemodynamics; 4.7.4 Thermodynamics; 4.8 Designing Compounds with Optimal Properties; 4.8.1 Correlation between Kinetic and Thermodynamic Parameters and Pharmacological Efficacy; 4.8.2 Structural Modeling; 4.9 Conclusions
- Control code
- 787843753
- Dimensions
- unknown
- Extent
- 1 online resource (xx, 339 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9783527645947
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- http://library.link/vocab/ext/overdrive/overdriveId
- 10.1002/9783527645947
- Publisher number
- Best.-Nr.: 1132966 000
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)787843753
- Label
- Protein-ligand interactions, edited by Holger Gohlke
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Protein-Ligand Interactions; Contents; List of Contributors; Preface; A Personal Foreword; Part I: Binding Thermodynamics; 1 Statistical Thermodynamics of Binding and Molecular Recognition Models; 1.1 Introductory Remarks; 1.2 The Binding Constant and Free Energy; 1.3 A Statistical Mechanical Treatment of Binding; 1.3.1 Binding in a Square Well Potential; 1.3.2 Binding in a Harmonic Potential; 1.4 Strategies for Calculating Binding Free Energies; 1.4.1 Direct Association Simulations; 1.4.2 The Quasi-Harmonic Approximation; 1.4.3 Estimation of Entropy Contributions to Binding
- 1.4.4 The MoleculeMechanics Poisson-Boltzmann Surface AreaMethod1.4.5 Thermodynamic Work Methods; 1.4.6 Ligand Decoupling; 1.4.7 Linear Interaction Methods; 1.4.8 Salt Effects on Binding; 1.4.9 Statistical Potentials; 1.4.10 Empirical Potentials; References; 2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates; 2.1 Engineering Binding Contributions; 2.2 Eliminating Unfavorable Enthalpy; 2.3 Improving Binding Enthalpy; 2.4 Improving Binding Affinity; 2.5 Improving Selectivity; 2.6 Thermodynamic Optimization Plot; Acknowledgments; References
- 3 Enthalpy-Entropy Compensation as Deduced from Measurements of Temperature Dependence3.1 Introduction; 3.2 The Current Status of Enthalpy-Entropy Compensation; 3.3 Measurement of the Entropy and Enthalpy of Activation; 3.4 An Example; 3.5 The Compensation Temperature; 3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy; 3.7 Evolutionary Considerations; 3.8 Textbooks; References; Part II: Learning from Biophysical Experiments; 4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization
- 4.1 Background4.2 SPR Biosensor Technology; 4.2.1 Principles; 4.2.2 Sensitivity; 4.2.3 Kinetic Resolution; 4.2.4 Performance for Drug Discovery; 4.3 From Interaction Models to Kinetic Rate Constants and Affinity; 4.3.1 Determination of Interaction Kinetic Rate Constants; 4.3.2 Determination of Affinities; 4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams; 4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions; 4.5 From Models to Mechanisms; 4.5.1 Irreversible Interactions; 4.5.2 Induced Fit; 4.5.3 Conformational Selection
- 4.5.4 Unified Model for Dynamic Targets4.5.5 Heterogeneous Systems/Parallel Reactions; 4.5.6 Mechanism-Based Inhibitors; 4.5.7 Multiple Binding Sites and Influence of Cofactors; 4.6 Structural Information; 4.7 The Use of Kinetic Rate Constants in Lead Generation and Optimization; 4.7.1 Structure-Kinetic Relationships; 4.7.2 Selectivity/Specificity and Resistance; 4.7.3 Chemodynamics; 4.7.4 Thermodynamics; 4.8 Designing Compounds with Optimal Properties; 4.8.1 Correlation between Kinetic and Thermodynamic Parameters and Pharmacological Efficacy; 4.8.2 Structural Modeling; 4.9 Conclusions
- Control code
- 787843753
- Dimensions
- unknown
- Extent
- 1 online resource (xx, 339 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9783527645947
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- http://library.link/vocab/ext/overdrive/overdriveId
- 10.1002/9783527645947
- Publisher number
- Best.-Nr.: 1132966 000
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)787843753
Subject
- Wechselwirkung
- Carrier Proteins
- Chemistry Techniques, Analytical -- methods
- Drugs -- Structure-activity relationships
- Drugs -- Structure-activity relationships
- Electronic book
- Electronic books
- Electronic books
- Ligand
- Ligand binding (Biochemistry)
- Ligand binding (Biochemistry)
- Ligands
- Ligands (Biochemistry)
- Ligands (Biochemistry)
- MEDICAL -- Drug Guides
- MEDICAL -- Nursing | Pharmacology
- MEDICAL -- Pharmacology
- MEDICAL -- Pharmacy
- Proteine
- Proteins
- Proteins
- Proteins -- pharmacokinetics
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Protein-ligand-interactions-edited-by-Holger/HN2qE1LhJQw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Protein-ligand-interactions-edited-by-Holger/HN2qE1LhJQw/">Protein-ligand interactions, edited by Holger Gohlke</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Protein-ligand interactions, edited by Holger Gohlke
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Protein-ligand-interactions-edited-by-Holger/HN2qE1LhJQw/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Protein-ligand-interactions-edited-by-Holger/HN2qE1LhJQw/">Protein-ligand interactions, edited by Holger Gohlke</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>