Coverart for item
The Resource Self-healing polymers : from principles to applications, edited by Wolfgang H. Binder

Self-healing polymers : from principles to applications, edited by Wolfgang H. Binder

Label
Self-healing polymers : from principles to applications
Title
Self-healing polymers
Title remainder
from principles to applications
Statement of responsibility
edited by Wolfgang H. Binder
Contributor
Subject
Language
eng
Summary
This self-contained reference, written by a team of renowned international authors adopt a didactical approach to systematically cover all important aspects of designing self-healing polymers from concepts to applications - transferring lessons learnt from nature to materials science. It is the first to discuss the chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature and tissue regeneration. Chapters will cover the design of self-healing polymers and explain the dynamics in these systems
Member of
Cataloging source
EBLCP
Dewey number
547.7
Illustrations
illustrations
Index
index present
Language note
English
LC call number
QD381.8
LC item number
.B384 2013eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Binder, Wolfgang
http://library.link/vocab/subjectName
  • Polymerization
  • Polymers
  • Self-assembly (Chemistry)
  • SCIENCE
  • Polymerization
  • Polymers
  • Self-assembly (Chemistry)
Label
Self-healing polymers : from principles to applications, edited by Wolfgang H. Binder
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Related Titles; Title page; Copyright page; List of Contributors; Introduction; Part One: Design of Self-Healing Materials; 1: Principles of Self-Healing Polymers; 1.1 Introductory Remarks; 1.2 General Concept for the Design and Classification of Self-Healing Materials; 1.3 Physical Principles of Self-Healing; 1.4 Chemical Principles of Self-Healing; 1.5 Multiple versus One-Time Self-Healing; 1.6 Resume and Outlook; Acknowledgments; 2: Self-Healing in Plants as Bio-Inspiration for Self-Repairing Polymers; 2.1 Self-Sealing and Self-Healing in Plants: A Short Overview
  • 2.2 Selected Self-Sealing and Self-Healing Processes in Plants as Role Models for Bio-Inspired Materials with Self-Repairing Properties2.3 Bio-Inspired Approaches for the Development of Self-Repairing Materials and Structures; 2.4 Bio-Inspired Self-Healing Materials: Outlook; Acknowledgments; 3: Modeling Self-Healing Processes in Polymers: From Nanogels to Nanoparticle-Filled Microcapsules; 3.1 Introduction; 3.2 Designing Self-Healing Dual Cross-Linked Nanogel Networks; 3.3 Designing "Artificial Leukocytes" That Help Heal Damaged Surfaces via the Targeted Delivery of Nanoparticles to Cracks
  • 3.4 ConclusionsPart Two: Polymer Dynamics; 4: Structure and Dynamics of Polymer Chains; 4.1 Foreword; 4.2 Techniques; 4.3 Structure; 4.4 Dynamics; 4.5 Application to Self-Healing; 4.6 Conclusions and Outlook; 5: Physical Chemistry of Cross-Linking Processes in Self-Healing Materials; 5.1 Introduction; 5.2 Thermodynamics of Gelation; 5.3 Viscoelastic Properties of the Sol-Gel Transition; 5.4 Phase Separation and Gelation; 5.5 Conclusions; 6: Thermally Remendable Polymers; 6.1 Principles of Thermal Healing; 6.2 Inorganic-Organic Systems; 6.3 Efficiency, Assessment of Healing Performance
  • 6.4 ConclusionsAcknowledgments; 7: Photochemically Remendable Polymers; 7.1 Background; 7.2 Molecular Design; 7.3 Reversible Photo-Crosslinking Behaviors; 7.4 Evaluation of Photo-Remendability; 7.5 Concluding Remarks; Acknowledgments; 8: Mechanophores for Self-Healing Applications; 8.1 Introduction; 8.2 Mechanochemical Damage; 8.3 Activation of Mechanophores; 8.4 Mechanochemical Self-Healing Strategies; 8.5 Conclusions and Outlook; 9: Chemistry of Crosslinking Processes for Self-Healing Polymers; 9.1 Introduction; 9.2 Extrinsic Self-Healing Materials; 9.3 Intrinsic Self-Healing Materials
  • 9.4 Concluding Remarks and Future Outlook10: Preparation of Nanocapsules and Core-Shell Nanofibers for Extrinsic Self-Healing Materials; 10.1 Selected Preparation Methods for the Encapsulation of Self-Healing Agents; 10.2 Mechanically Induced Self-Healing; 10.3 Stimuli-Responsive Self-Healing Materials; 10.4 Novel Approaches and Perspectives; Part Three: Supramolecular Systems; 11: Self-Healing Polymers via Supramolecular, Hydrogen-Bonded Networks; 11.1 Introduction; 11.2 Dynamics of Hydrogen Bonds in Solution; 11.3 Supramolecular Gels; 11.4 Self-Healing Bulk Materials; 11.5 Conclusions
Control code
836402320
Dimensions
unknown
Extent
1 online resource (xix, 425 pages)
File format
unknown
Form of item
online
Isbn
9781299450134
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
9783527670208
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)836402320
Label
Self-healing polymers : from principles to applications, edited by Wolfgang H. Binder
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Related Titles; Title page; Copyright page; List of Contributors; Introduction; Part One: Design of Self-Healing Materials; 1: Principles of Self-Healing Polymers; 1.1 Introductory Remarks; 1.2 General Concept for the Design and Classification of Self-Healing Materials; 1.3 Physical Principles of Self-Healing; 1.4 Chemical Principles of Self-Healing; 1.5 Multiple versus One-Time Self-Healing; 1.6 Resume and Outlook; Acknowledgments; 2: Self-Healing in Plants as Bio-Inspiration for Self-Repairing Polymers; 2.1 Self-Sealing and Self-Healing in Plants: A Short Overview
  • 2.2 Selected Self-Sealing and Self-Healing Processes in Plants as Role Models for Bio-Inspired Materials with Self-Repairing Properties2.3 Bio-Inspired Approaches for the Development of Self-Repairing Materials and Structures; 2.4 Bio-Inspired Self-Healing Materials: Outlook; Acknowledgments; 3: Modeling Self-Healing Processes in Polymers: From Nanogels to Nanoparticle-Filled Microcapsules; 3.1 Introduction; 3.2 Designing Self-Healing Dual Cross-Linked Nanogel Networks; 3.3 Designing "Artificial Leukocytes" That Help Heal Damaged Surfaces via the Targeted Delivery of Nanoparticles to Cracks
  • 3.4 ConclusionsPart Two: Polymer Dynamics; 4: Structure and Dynamics of Polymer Chains; 4.1 Foreword; 4.2 Techniques; 4.3 Structure; 4.4 Dynamics; 4.5 Application to Self-Healing; 4.6 Conclusions and Outlook; 5: Physical Chemistry of Cross-Linking Processes in Self-Healing Materials; 5.1 Introduction; 5.2 Thermodynamics of Gelation; 5.3 Viscoelastic Properties of the Sol-Gel Transition; 5.4 Phase Separation and Gelation; 5.5 Conclusions; 6: Thermally Remendable Polymers; 6.1 Principles of Thermal Healing; 6.2 Inorganic-Organic Systems; 6.3 Efficiency, Assessment of Healing Performance
  • 6.4 ConclusionsAcknowledgments; 7: Photochemically Remendable Polymers; 7.1 Background; 7.2 Molecular Design; 7.3 Reversible Photo-Crosslinking Behaviors; 7.4 Evaluation of Photo-Remendability; 7.5 Concluding Remarks; Acknowledgments; 8: Mechanophores for Self-Healing Applications; 8.1 Introduction; 8.2 Mechanochemical Damage; 8.3 Activation of Mechanophores; 8.4 Mechanochemical Self-Healing Strategies; 8.5 Conclusions and Outlook; 9: Chemistry of Crosslinking Processes for Self-Healing Polymers; 9.1 Introduction; 9.2 Extrinsic Self-Healing Materials; 9.3 Intrinsic Self-Healing Materials
  • 9.4 Concluding Remarks and Future Outlook10: Preparation of Nanocapsules and Core-Shell Nanofibers for Extrinsic Self-Healing Materials; 10.1 Selected Preparation Methods for the Encapsulation of Self-Healing Agents; 10.2 Mechanically Induced Self-Healing; 10.3 Stimuli-Responsive Self-Healing Materials; 10.4 Novel Approaches and Perspectives; Part Three: Supramolecular Systems; 11: Self-Healing Polymers via Supramolecular, Hydrogen-Bonded Networks; 11.1 Introduction; 11.2 Dynamics of Hydrogen Bonds in Solution; 11.3 Supramolecular Gels; 11.4 Self-Healing Bulk Materials; 11.5 Conclusions
Control code
836402320
Dimensions
unknown
Extent
1 online resource (xix, 425 pages)
File format
unknown
Form of item
online
Isbn
9781299450134
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
9783527670208
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)836402320

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...