The Resource Symplectic cobordism and the computation of stable stems, Stanley O. Kochman
Symplectic cobordism and the computation of stable stems, Stanley O. Kochman
Resource Information
The item Symplectic cobordism and the computation of stable stems, Stanley O. Kochman represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.This item is available to borrow from 1 library branch.
Resource Information
The item Symplectic cobordism and the computation of stable stems, Stanley O. Kochman represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (105 pages)
- Note
- "January 1993, Volume 104, Number 496 (third of 6 numbers)"--Cover
- Contents
-
- ""CONTENTS""; ""THE SYMPLECTIC COBORDISM RING III""; ""1 Introduction""; ""2 Higher Differentials -- Theory""; ""3 Higher Differentials -- Examples""; ""4 The Hurewicz Homomorphism""; ""5 The Spectrum msp""; ""6 The Image of Ω*[sub(sp)] in n*""; ""7 On the Image of Ï€[sup(s)][sub(*)] in Ω*[sub(sp)]""; ""8 The First Hundred Stems""; ""THE SYMPLECTIC ADAMS NOVIKOV SPECTRAL SEQUENCE FOR SPHERES""; ""1 Introduction""; ""2 Structure of M S[sub(p)][sub(*)]""; ""3 Construction of â?*[sub(sp)] -- The First Reduction Theorem""; ""4 Admissibility Relations""
- ""5 Construction of â?*[sub(sp)] -- The Second Reduction Theorem""""6 Homology of T*[sub(sp)] -- The Bockstein Spectral Sequence""; ""7 Homology of â? [a[sub(t)]] and â? [ηÎ"[sub(t)]]""; ""8 The Adams-Novikov Spectral Sequence""; ""BIBLIOGRAPHY""
- Isbn
- 9781470400736
- Label
- Symplectic cobordism and the computation of stable stems
- Title
- Symplectic cobordism and the computation of stable stems
- Statement of responsibility
- Stanley O. Kochman
- Language
- eng
- Cataloging source
- E7B
- http://library.link/vocab/creatorDate
- 1946-
- http://library.link/vocab/creatorName
- Kochman, Stanley O.
- Dewey number
- 514/.72
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA3
- LC item number
- .K634 1993eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Memoirs of the American Mathematical Society,
- Series volume
- Volume 104, Number 496
- http://library.link/vocab/subjectName
-
- Cobordism theory
- Rings (Algebra)
- Adams spectral sequences
- Symplectic manifolds
- Adams spectral sequences
- Cobordism theory
- Rings (Algebra)
- Symplectic manifolds
- Label
- Symplectic cobordism and the computation of stable stems, Stanley O. Kochman
- Note
- "January 1993, Volume 104, Number 496 (third of 6 numbers)"--Cover
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- ""CONTENTS""; ""THE SYMPLECTIC COBORDISM RING III""; ""1 Introduction""; ""2 Higher Differentials -- Theory""; ""3 Higher Differentials -- Examples""; ""4 The Hurewicz Homomorphism""; ""5 The Spectrum msp""; ""6 The Image of Ω*[sub(sp)] in n*""; ""7 On the Image of Ï€[sup(s)][sub(*)] in Ω*[sub(sp)]""; ""8 The First Hundred Stems""; ""THE SYMPLECTIC ADAMS NOVIKOV SPECTRAL SEQUENCE FOR SPHERES""; ""1 Introduction""; ""2 Structure of M S[sub(p)][sub(*)]""; ""3 Construction of â?*[sub(sp)] -- The First Reduction Theorem""; ""4 Admissibility Relations""
- ""5 Construction of â?*[sub(sp)] -- The Second Reduction Theorem""""6 Homology of T*[sub(sp)] -- The Bockstein Spectral Sequence""; ""7 Homology of â? [a[sub(t)]] and â? [ηÎ"[sub(t)]]""; ""8 The Adams-Novikov Spectral Sequence""; ""BIBLIOGRAPHY""
- Control code
- 891385210
- Dimensions
- unknown
- Extent
- 1 online resource (105 pages)
- Form of item
- online
- Isbn
- 9781470400736
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)891385210
- Label
- Symplectic cobordism and the computation of stable stems, Stanley O. Kochman
- Note
- "January 1993, Volume 104, Number 496 (third of 6 numbers)"--Cover
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- ""CONTENTS""; ""THE SYMPLECTIC COBORDISM RING III""; ""1 Introduction""; ""2 Higher Differentials -- Theory""; ""3 Higher Differentials -- Examples""; ""4 The Hurewicz Homomorphism""; ""5 The Spectrum msp""; ""6 The Image of Ω*[sub(sp)] in n*""; ""7 On the Image of Ï€[sup(s)][sub(*)] in Ω*[sub(sp)]""; ""8 The First Hundred Stems""; ""THE SYMPLECTIC ADAMS NOVIKOV SPECTRAL SEQUENCE FOR SPHERES""; ""1 Introduction""; ""2 Structure of M S[sub(p)][sub(*)]""; ""3 Construction of â?*[sub(sp)] -- The First Reduction Theorem""; ""4 Admissibility Relations""
- ""5 Construction of â?*[sub(sp)] -- The Second Reduction Theorem""""6 Homology of T*[sub(sp)] -- The Bockstein Spectral Sequence""; ""7 Homology of â? [a[sub(t)]] and â? [ηÎ"[sub(t)]]""; ""8 The Adams-Novikov Spectral Sequence""; ""BIBLIOGRAPHY""
- Control code
- 891385210
- Dimensions
- unknown
- Extent
- 1 online resource (105 pages)
- Form of item
- online
- Isbn
- 9781470400736
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Specific material designation
- remote
- System control number
- (OCoLC)891385210
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Symplectic-cobordism-and-the-computation-of/NAdayRMY0oc/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Symplectic-cobordism-and-the-computation-of/NAdayRMY0oc/">Symplectic cobordism and the computation of stable stems, Stanley O. Kochman</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Symplectic cobordism and the computation of stable stems, Stanley O. Kochman
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/portal/Symplectic-cobordism-and-the-computation-of/NAdayRMY0oc/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/portal/Symplectic-cobordism-and-the-computation-of/NAdayRMY0oc/">Symplectic cobordism and the computation of stable stems, Stanley O. Kochman</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>