Coverart for item
The Resource Yearning for the impossible : the surprising truths of mathematics, John Stillwell

Yearning for the impossible : the surprising truths of mathematics, John Stillwell

Label
Yearning for the impossible : the surprising truths of mathematics
Title
Yearning for the impossible
Title remainder
the surprising truths of mathematics
Statement of responsibility
John Stillwell
Creator
Subject
Genre
Language
eng
Cataloging source
DLC
http://library.link/vocab/creatorName
Stillwell, John
Dewey number
510
Illustrations
illustrations
Index
index present
LC call number
QA37.3
LC item number
.S75 2006
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/subjectName
  • Mathematics
  • Mathematics
Label
Yearning for the impossible : the surprising truths of mathematics, John Stillwell
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 215-217) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Irrational triangles
  • Quaternions
  • 6.5.
  • The four-square theorem
  • 6.6.
  • Quaternions and space rotations
  • 6.7.
  • Symmetry in three dimensions
  • 6.8.
  • Tetrahedral symmetry and the 24-cell
  • 6.9
  • 1.4.
  • The regular polytopes
  • 7.
  • The ideal
  • 7.1.
  • Discovery and invention
  • 7.2.
  • Division with remainder
  • 7.3.
  • Unique prime factorization
  • 7.4.
  • The Pythagorean nightmare
  • Gaussian integers
  • 7.5.
  • Gaussian primes
  • 7.6.
  • Rational slopes and rational angles
  • 7.7.
  • Unique prime factorization lost
  • 7.8.
  • Ideals, or unique prime factorization regained.
  • 8.
  • 1.5.
  • Periodic space
  • 8.1.
  • The impossible tribar
  • 8.2.
  • The cylinder and the plane
  • 8.3.
  • Where the wild things are
  • 8.4.
  • Periodic worlds
  • 8.5.
  • Explaining the irrational
  • Periodicity and topology
  • 8.6.
  • A brief history of periodicity
  • 9.
  • The infinite
  • 9.1.
  • Finite and infinite
  • 9.2.
  • Potential and actual infinity
  • 9.3.
  • 1.6.
  • The uncountable
  • 9.4.
  • The diagonal argument
  • 9.5.
  • The transcendental
  • 9.6.
  • Yearning for completeness
  • Epilogue
  • Index
  • The continued fraction for [square root of] 2
  • 1.7.
  • Equal temperament
  • 2.
  • Preface
  • The imaginary
  • Negative numbers
  • Imaginary numbers
  • Solving cubic equations
  • 2.4.
  • Real solutions via imaginary numbers
  • 2.5.
  • Where were imaginary numbers before 1572?
  • 2.6.
  • Geometry of multiplication
  • 1.
  • 2. 7.
  • Complex numbers give more than we aked for
  • 2.8.
  • Why call them "complex" numbers?
  • 3.
  • The horizon
  • 3.1.
  • Parallel lines
  • 3.2.
  • Coordinates
  • The irrational
  • 3.3
  • Parallel lines and vision
  • 3.4.
  • Drawing without measurement
  • 3.5.
  • The theorems of Pappus and Desargues
  • 3.6.
  • The little Desargues theorem
  • What are the laws of algebra?
  • 3.8.
  • 1.1.
  • Projective addition and multiplication
  • 4.
  • The infinitesimal
  • 4.1.
  • Length and area
  • 4.2.
  • Volume
  • 4.3.
  • Volume of a tetrahedron
  • 4.4.
  • The Pythagorean dream
  • The circle
  • 4.5.
  • The parabola
  • 4.6.
  • The slopes of other curves
  • 4.7.
  • Slope and area
  • 4.8.
  • The value of [pi]
  • 4.9.
  • 1.2.
  • Ghosts of departed quantities.
  • 5.
  • Curved space
  • 5.1.
  • Flat space and medieval space
  • 5.2.
  • The 2-sphere and the 3-sphere
  • 5.3.
  • Flat surfaces and the parallel axiom
  • 5.4.
  • The Pythagorean theorem
  • The sphere and the parallel axiom
  • 5.5.
  • Non-Euclidean geometry
  • 5.6.
  • Negative curvature
  • 5.7.
  • The hyperbolic plane
  • 5.8.
  • Hyperbolic space
  • 5.9.
  • 1.3.
  • Mathematical space and actual space
  • 6.
  • The fourth dimension
  • 6.1.
  • Arithmetic of pairs
  • 6.2.
  • Searching for an arithmetic of triples
  • 6.3.
  • Why n-tuples are unlike numbers when n [is greater than or equal to] 3
  • 6.4.
Control code
62093052
Dimensions
24 cm
Extent
xiii, 230 pages
Isbn
9781568812540
Isbn Type
(alk. : paper)
Lccn
2005054950
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
(OCoLC)62093052
Label
Yearning for the impossible : the surprising truths of mathematics, John Stillwell
Publication
Bibliography note
Includes bibliographical references (pages 215-217) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Irrational triangles
  • Quaternions
  • 6.5.
  • The four-square theorem
  • 6.6.
  • Quaternions and space rotations
  • 6.7.
  • Symmetry in three dimensions
  • 6.8.
  • Tetrahedral symmetry and the 24-cell
  • 6.9
  • 1.4.
  • The regular polytopes
  • 7.
  • The ideal
  • 7.1.
  • Discovery and invention
  • 7.2.
  • Division with remainder
  • 7.3.
  • Unique prime factorization
  • 7.4.
  • The Pythagorean nightmare
  • Gaussian integers
  • 7.5.
  • Gaussian primes
  • 7.6.
  • Rational slopes and rational angles
  • 7.7.
  • Unique prime factorization lost
  • 7.8.
  • Ideals, or unique prime factorization regained.
  • 8.
  • 1.5.
  • Periodic space
  • 8.1.
  • The impossible tribar
  • 8.2.
  • The cylinder and the plane
  • 8.3.
  • Where the wild things are
  • 8.4.
  • Periodic worlds
  • 8.5.
  • Explaining the irrational
  • Periodicity and topology
  • 8.6.
  • A brief history of periodicity
  • 9.
  • The infinite
  • 9.1.
  • Finite and infinite
  • 9.2.
  • Potential and actual infinity
  • 9.3.
  • 1.6.
  • The uncountable
  • 9.4.
  • The diagonal argument
  • 9.5.
  • The transcendental
  • 9.6.
  • Yearning for completeness
  • Epilogue
  • Index
  • The continued fraction for [square root of] 2
  • 1.7.
  • Equal temperament
  • 2.
  • Preface
  • The imaginary
  • Negative numbers
  • Imaginary numbers
  • Solving cubic equations
  • 2.4.
  • Real solutions via imaginary numbers
  • 2.5.
  • Where were imaginary numbers before 1572?
  • 2.6.
  • Geometry of multiplication
  • 1.
  • 2. 7.
  • Complex numbers give more than we aked for
  • 2.8.
  • Why call them "complex" numbers?
  • 3.
  • The horizon
  • 3.1.
  • Parallel lines
  • 3.2.
  • Coordinates
  • The irrational
  • 3.3
  • Parallel lines and vision
  • 3.4.
  • Drawing without measurement
  • 3.5.
  • The theorems of Pappus and Desargues
  • 3.6.
  • The little Desargues theorem
  • What are the laws of algebra?
  • 3.8.
  • 1.1.
  • Projective addition and multiplication
  • 4.
  • The infinitesimal
  • 4.1.
  • Length and area
  • 4.2.
  • Volume
  • 4.3.
  • Volume of a tetrahedron
  • 4.4.
  • The Pythagorean dream
  • The circle
  • 4.5.
  • The parabola
  • 4.6.
  • The slopes of other curves
  • 4.7.
  • Slope and area
  • 4.8.
  • The value of [pi]
  • 4.9.
  • 1.2.
  • Ghosts of departed quantities.
  • 5.
  • Curved space
  • 5.1.
  • Flat space and medieval space
  • 5.2.
  • The 2-sphere and the 3-sphere
  • 5.3.
  • Flat surfaces and the parallel axiom
  • 5.4.
  • The Pythagorean theorem
  • The sphere and the parallel axiom
  • 5.5.
  • Non-Euclidean geometry
  • 5.6.
  • Negative curvature
  • 5.7.
  • The hyperbolic plane
  • 5.8.
  • Hyperbolic space
  • 5.9.
  • 1.3.
  • Mathematical space and actual space
  • 6.
  • The fourth dimension
  • 6.1.
  • Arithmetic of pairs
  • 6.2.
  • Searching for an arithmetic of triples
  • 6.3.
  • Why n-tuples are unlike numbers when n [is greater than or equal to] 3
  • 6.4.
Control code
62093052
Dimensions
24 cm
Extent
xiii, 230 pages
Isbn
9781568812540
Isbn Type
(alk. : paper)
Lccn
2005054950
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
(OCoLC)62093052

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...