Mathematical models
Resource Information
The topic Mathematical models represents a specific aggregation or gathering of resources found in Missouri University of Science & Technology Library.
The Resource
Mathematical models
Resource Information
The topic Mathematical models represents a specific aggregation or gathering of resources found in Missouri University of Science & Technology Library.
- Label
- Mathematical models
A sample of Items that are about the Topic Mathematical models See All
Context
Context of Mathematical modelsFocus of
No resources found
No enriched resources found
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models -- Case studies
- Mathematical models -- Congresses
- Mathematical models -- Data processing
- Mathematical models -- Data processing
- Mathematical models -- Evaluation
- Mathematical models -- Handbooks, manuals, etc
- Mathematical models -- History and criticism
- Mathematical models -- Industrial applications -- Congresses
- Mathematical models -- Periodicals
- Mathematical models -- Problems, exercises, etc
- Mathematical models -- Research -- United States -- Periodicals
- Mathematical models -- Risk assessment
- Mathematical models -- Social aspects
- Mathematical models -- Standards
- Mathematical models -- Study and teaching
- Mathematical models -- Study and teaching
- Mathematical models -- Study and teaching (Secondary)
- Mathematical models -- Study and teaching -- Periodicals
- Mathematical models -- Testing
- Mathematical models -- Textbooks
Subfocus of
No resources found
No enriched resources found
- AIDS (Disease) -- Epidemiology | Mathematical models
- AIDS (Disease) -- Epidemiology | Mathematical models
- AIDS (Disease) -- Mathematical models
- AIDS (Disease) -- Mathematical models
- Abies magnifica -- California -- Growth | Mathematical models
- Abies magnifica -- Oregon -- Growth | Mathematical models
- Ablation (Aerothermodynamics) -- Mathematical models
- Ablation (Aerothermodynamics) -- Mathematical models
- Absorption -- Mathematical models
- Absorption -- Mathematical models
- Academic achievement -- United States -- Mathematical models
- Academic achievement -- United States -- Statistics -- Mathematical models
- Acceleration waves -- Mathematical models
- Accelerograms -- Mathematical models
- Access to airports -- Mathematical models
- Accounting -- Mathematical models
- Accounting -- Mathematical models
- Accounting -- Mathematical models -- Periodicals
- Achievement tests -- Mathematical models
- Acid deposition -- Environmental aspects -- United States -- Mathematical models
- Acid pollution of rivers, lakes, etc. -- United States -- Mathematical models
- Acid pollution of rivers, lakes, etc. -- Wyoming | Medicine Bow National Forest -- Mathematical models
- Acid precipitation (Meteorology) -- Wyoming | Medicine Bow National Forest -- Mathematical models
- Acid rain -- Environmental aspects -- Asia -- Mathematical models
- Acoustic surface waves -- Mathematical models
- Acoustic velocity meters -- Mathematical models
- Acoustical engineering -- Mathematical models
- Acoustical engineering -- Mathematical models
- Acoustical engineering -- Mathematical models -- Congresses
- Actin -- Identification | Mathematical models
- Ad hoc networks (Computer networks) -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptive antennas -- Mathematical models
- Adaptive control systems -- Mathematical models
- Adaptive control systems -- Mathematical models
- Adaptive filters -- Mathematical models
- Adaptive filters -- Mathematical models
- Adaptive signal processing -- Mathematical models
- Adhesive joints -- Mathematical models
- Adhesive joints -- Mathematical models
- Adsorption -- Mathematical models
- Adsorption -- Mathematical models
- Advertising -- Mathematical models
- Aerodynamic heating -- Mathematical models
- Aerodynamic load -- Mathematical models
- Aerodynamic noise -- Mathematical models
- Aerodynamic noise -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models -- Congresses
- Aerodynamics, Hypersonic -- Mathematical models
- Aerodynamics, Supersonic -- Mathematical models
- Aerodynamics, Supersonic -- Mathematical models
- Aerodynamics, Transonic -- Mathematical models
- Aeroelasticity -- Mathematical models
- Aeroelasticity -- Mathematical models
- Aeroelasticity -- Mathematical models
- Aerofoils -- Mathematical models
- Aerofoils -- Mathematical models | Data processing
- Aeronautics -- Mathematical models
- Aeronautics -- Mathematical models
- Aeronautics, Commercial -- Mathematical models
- Aeronautics, Commercial -- Passenger traffic | Mathematical models
- Aeronautics, Commercial -- Passenger traffic | Mathematical models
- Aeronautics, Military -- Mathematical models
- Aerosol sniffing -- Mathematical models
- Aerosols -- Dynamics | Mathematical models
- Aerosols -- Mathematical models
- Aerosols -- Testing | Mathematical models
- Aerosols, Radioactive -- Mathematical models
- Aerosols, Radioactive -- Mathematical models -- Handbooks, manuals, etc
- Aerosols, Radioactive -- Safety measures | Mathematical models
- Aerothermodynamics -- Mathematical models
- Africa -- Economic policy | Mathematical models
- African Americans -- Housing | Mathematical models
- Aggregates (Building materials) -- Testing | Mathematical models
- Agricultural credit -- Mathematical models
- Agricultural credit -- Mathematical models
- Agricultural innovations -- Mathematical models
- Agricultural pollution -- Environmental aspects | Mathematical models
- Agricultural pollution -- Mathematical models
- Agricultural prices -- Mathematical models
- Agricultural prices -- United States -- Mathematical models
- Agricultural productivity -- China -- Mathematical models
- Agricultural productivity -- United States -- Forecasting | Mathematical models
- Agricultural systems -- Mathematical models
- Agricultural systems -- Mathematical models
- Agriculture -- Economic aspects -- India | Punjab -- Mathematical models
- Agriculture -- Economic aspects -- United States -- Mathematical models
- Agriculture -- Economic aspects | Mathematical models
- Agriculture -- Economic aspects | Mathematical models
- Agriculture -- Economic aspects | Mathematical models
- Agriculture -- Environmental aspects -- United States -- Mathematical models
- Agriculture and state -- Mathematical models
- Agriculture and state -- Mathematical models
- Aids to air navigation -- United States -- Testing | Mathematical models
- Air -- Analysis | Mathematical models
- Air -- Pollution -- Great Lakes Region (North America) -- Mathematical models
- Air -- Pollution -- Great Lakes Region -- Mathematical models
- Air -- Pollution -- Kentucky -- Mathematical models
- Air -- Pollution -- United States -- Mathematical models
- Air -- Pollution -- United States -- Mathematical models -- Handbooks, manuals, etc
- Air -- Pollution -- United States -- Measurement | Mathematical models
- Air -- Pollution | Economic aspects -- Poland -- Mathematical models
- Air -- Pollution | Economic aspects | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models -- Congresses
- Air -- Pollution | Mathematical models -- Handbooks, manuals, etc
- Air -- Pollution | Mathematical models | Computer programs -- Handbooks, manuals, etc
- Air -- Pollution | Measurement | Mathematical models
- Air -- Pollution | Physiological effect | Mathematical models
- Air -- Pollution | Risk assessment | Mathematical models | Evaluation
- Air -- Pollution | Testing | Mathematical models -- Handbooks, manuals, etc
- Air bag restraint systems -- Mathematical models
- Air defenses -- Mathematical models
- Air ducts -- Acoustic properties | Mathematical models
- Air ducts -- Acoustic properties | Mathematical models
- Air ducts -- Fluid dynamics | Mathematical models
- Air flow -- Forecasting | Mathematical models
- Air flow -- Mathematical models
- Air flow -- Mathematical models
- Air flow -- Measurement | Mathematical models
- Air guns -- Mathematical models
- Air quality -- Mathematical models
- Air quality -- Mathematical models
- Air quality -- Mathematical models -- Handbooks, manuals, etc
- Air quality -- Montana -- Mathematical models
- Air quality -- United States -- Mathematical models
- Air quality -- United States -- Mathematical models -- Periodicals
- Air quality -- West (U.S.) -- Mathematical models
- Air quality management -- Mathematical models
- Air quality management -- Mathematical models
- Air quality management -- United States -- Mathematical models
- Air quality management -- United States -- Mathematical models | Evaluation
- Air traffic control -- Mathematical models
- Air traffic control -- Mathematical models
- Air traffic controllers -- Testing | Mathematical models
- Air travel -- Mathematical models
- Air warfare -- Mathematical models
- Airborne infection -- Mathematical models
- Aircraft accidents -- Mathematical models
- Aircraft exhaust emissions -- Measurement | Mathematical models
- Aircraft exhaust emissions -- United States -- Mathematical models
- Airdrop -- Mathematical models
- Airframes -- Mathematical models
- Airframes -- Mathematical models
- Airframes -- Mathematical models
- Airlines -- Management | Mathematical models
- Airlines -- Management | Mathematical models
- Airplanes -- Control surfaces | Mathematical models
- Airplanes -- Control systems | Mathematical models
- Airplanes -- Control systems | Mathematical models
- Airplanes -- Crashworthiness | Mathematical models
- Airplanes -- Design and construction | Mathematical models
- Airplanes -- Flight testing | Mathematical models
- Airplanes -- Flight testing | Mathematical models
- Airplanes -- Flight testing | Mathematical models
- Airplanes -- Fuel consumption | Mathematical models
- Airplanes -- Handling characteristics | Mathematical models
- Airplanes -- Landing | Mathematical models
- Airplanes -- Materials | Mathematical models
- Airplanes -- Materials | Mathematical models
- Airplanes -- Mathematical models
- Airplanes -- Mathematical models
- Airplanes -- Motors | Cylinders | Mathematical models
- Airplanes -- Motors | Mathematical models
- Airplanes -- Motors | Thrust | Mathematical models
- Airplanes -- Motors | Valves | Motors | Mathematical models
- Airplanes -- Noise | Mathematical models
- Airplanes -- Ownership | Mathematical models
- Airplanes -- Performance | Mathematical models
- Airplanes -- Piloting | Mathematical models
- Airplanes -- Purchasing | Mathematical models
- Airplanes -- Radio antennas | Mathematical models
- Airplanes -- Ramjet engines | Mathematical models
- Airplanes -- Tires | Mathematical models -- Congresses
- Airplanes -- Turbofan engines | Mathematical models
- Airplanes -- Turbojet engines | Mathematical models
- Airplanes -- Wings | Design and construction | Mathematical models
- Airplanes -- Wings | Mathematical models
- Airplanes -- Wings, Swept-back | Mathematical models
- Airplanes, Military -- Maintenance and repair | Mathematical models
- Airport noise -- Mathematical models
- Airports -- Economic aspects | Mathematical models
- Airtankers (Forest fire control) -- Mathematical models
- Airways -- Mathematical models
- Alcoholic beverage industry -- Law and legislation | Mathematical models
- Aleutian Basin -- Environmental conditions | Mathematical models
- Alfalfa -- Mathematical models | Standards
- Algebra, Boolean -- Mathematical models -- Handbooks, manuals, etc
- Algorithms -- Mathematical models
- Alliances -- Mathematical models
- Alloys -- Mathematical models
- Alloys -- Mathematical models -- Congresses
- Alloys -- Testing | Mathematical models
- Alloys -- Thermal properties | Mathematical models
- Alluvial streams -- Mathematical models
- Alluvial streams -- Mathematical models
- Aluminum alloys -- Fatigue | Mathematical models
- Ambient intelligence -- Mathematical models
- Ammonia -- Environmental aspects | Mathematical models
- Analysis (Philosophy) -- Mathematical models
- Analysis of covariance -- Mathematical models
- Analysis of variance -- Mathematical models
- Animal behavior -- Computer simulation | Mathematical models -- Case studies
- Animal behavior -- Mathematical models
- Animal behavior -- Mathematical models
- Animal ecology -- Mathematical models
- Animal ecology -- Mathematical models
- Animal locomotion -- Mathematical models -- Congresses
- Animal nutrition -- Mathematical models
- Animal nutrition -- Mathematical models -- Congresses
- Animal populations -- Estimates | Mathematical models
- Animal populations -- Mathematical models
- Animal populations -- Mathematical models
- Animal societies -- Mathematical models
- Animal swimming -- Mathematical models -- Congresses
- Anisotropy -- Mathematical models
- Anisotropy -- Mathematical models
- Annealing of metals -- Mathematical models
- Annuities -- Mathematical models
- Antenna arrays -- Mathematical models
- Antenna arrays -- Mathematical models
- Antenna radiation patterns -- Mathematical models
- Antenna radiation patterns -- Mathematical models
- Antennas (Electronics) -- Design and construction | Mathematical models
- Antennas (Electronics) -- Mathematical models
- Ants -- Behavior | Mathematical models
- Ants -- Behavior | Mathematical models
- Approximation theory -- Mathematical models
- Aquatic ecology -- Mathematical models
- Aqueducts -- California | San Diego -- Mathematical models
- Aquifer storage recovery -- Florida | Saint Petersburg -- Mathematical models
- Aquifers -- Florida -- Mathematical models
- Aquifers -- Georgia -- Mathematical models
- Aquifers -- Georgia | Savannah Region -- Mathematical models
- Aquifers -- High Plains (U.S.) -- Mathematical models
- Aquifers -- Idaho -- Mathematical models
- Aquifers -- Indiana | Vincennes -- Mathematical models
- Aquifers -- Kansas -- Mathematical models
- Aquifers -- Massachusetts | Cape Cod Region -- Mathematical models
- Aquifers -- Mathematical models
- Aquifers -- Mathematical models
- Aquifers -- Minnesota | Grand Rapids Region -- Mathematical models
- Aquifers -- Minnesota | Michigan | Grand Rapids Region -- Mathematical models
- Aquifers -- Mississippi -- Mathematical models
- Aquifers -- Montana | Judith Basin -- Mathematical models
- Aquifers -- New Jersey -- Mathematical models
- Aquifers -- New Jersey | Kenvil Region -- Mathematical models
- Aquifers -- New Mexico | Albuquerque -- Mathematical models
- Aquifers -- New Mexico | Santa Fe County -- Mathematical models
- Aquifers -- Northeastern States -- Mathematical models
- Aquifers -- Ohio | Franklin County -- Mathematical models
- Aquifers -- Oklahoma -- Mathematical models
- Aquifers -- Ozark Mountains -- Water-supply | Mathematical models
- Aquifers -- Pennsylvania | Lansdale Region -- Mathematical models
- Aquifers -- Rhode Island -- Mathematical models
- Aquifers -- Snake River Plain (Idaho and Or.) -- Mathematical models
- Aquifers -- South Carolina -- Mathematical models
- Aquifers -- South Dakota | Brown County -- Mathematical models
- Aquifers -- Southern States -- Mathematical models
- Aquifers -- Texas | San Antonio Region -- Mathematical models
- Aquifers -- West Virginia -- Mathematical models
- Aquifers -- Wyoming -- Mathematical models
- Aquifers -- Wyoming | Wheatland -- Mathematical models
- Arbitrage -- Mathematical models
- Arbitrage -- Mathematical models
- Arc-jet rocket engines -- Mathematical models
- Archaeology -- Mathematical models
- Archaeology -- Mathematical models
- Architecture -- Mathematical models
- Archival materials -- Conservation and restoration | Mathematical models
- Arkansas River -- Mathematical models
- Armed Forces -- Mathematical models
- Arms control -- Mathematical models -- Congresses
- Aromatic amines -- Environmental aspects | Mathematical models
- Artificial groundwater recharge -- Arkansas -- Mathematical models
- Artificial groundwater recharge -- California | San Bernardino -- Mathematical models
- Artificial groundwater recharge -- Connecticut -- Mathematical models
- Artificial groundwater recharge -- Florida -- Mathematical models
- Artificial groundwater recharge -- Florida | Saint Petersburg -- Mathematical models
- Artificial groundwater recharge -- Maine | Oxford County -- Mathematical models
- Artificial groundwater recharge -- Mathematical models
- Artificial groundwater recharge -- Mathematical models
- Artificial groundwater recharge -- Minnesota -- Mathematical models
- Artificial groundwater recharge -- Minnesota | Rochester -- Mathematical models
- Artificial groundwater recharge -- New York (State) | Westchester County -- Mathematical models
- Artificial intelligence -- Mathematical models
- Artificial intelligence -- Mathematical models
- Artificial intelligence -- Mathematical models
- Artificial intelligence -- Mathematical models -- Congresses
- Artificial intelligence -- Mathematical models -- Periodicals
- Artificial life -- Mathematical models
- Artificial satellites -- Orbits | Mathematical models
- Arts -- Economic aspects | Mathematical models
- Asia -- Economic policy | Mathematical models
- Asphalt concrete -- Cracking | Mathematical models
- Asphalt concrete -- Mechanical properties | Mathematical models
- Assembly-line methods -- Mathematical models
- Asset allocation -- Mathematical models
- Asset specificity -- Mathematical models
- Asset-liability management -- Mathematical models
- Asset-liability management -- Mathematical models
- Asset-liability management -- Mathematical models -- Handbooks, manuals, etc
- Astronautics -- Mathematical models
- Astronautics -- Mathematical models
- Astronomy -- Mathematical models
- Astronomy -- Mathematical models -- Periodicals
- Astrophysical jets -- Mathematical models -- Congresses
- Astrophysics -- Mathematical models
- Atmosphere -- Mathematical models
- Atmosphere -- Mathematical models
- Atmospheric carbon dioxide -- Economic aspects -- China -- Mathematical models
- Atmospheric carbon dioxide -- Mathematical models
- Atmospheric carbon dioxide -- United States -- Measurement | Mathematical models
- Atmospheric chemistry -- Mathematical models
- Atmospheric circulation -- Mathematical models
- Atmospheric circulation -- Mathematical models
- Atmospheric circulation -- Mathematical models -- Congresses
- Atmospheric circulation -- New Mexico -- Mathematical models
- Atmospheric deposition -- Mathematical models
- Atmospheric diffusion -- Florida | Merritt Island -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- Mathematical models -- Congresses
- Atmospheric diffusion -- United States -- Mathematical models
- Atmospheric ionization -- Mathematical models
- Atmospheric ozone -- Measurement | Mathematical models -- Periodicals
- Atmospheric physics -- Mathematical models
- Atmospheric pressure -- Mathematical models
- Atmospheric radiation -- Mathematical models
- Atmospheric temperature -- Mathematical models
- Atmospheric turbidity -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Measurement | Mathematical models
- Atmospheric waves -- Mathematical models
- Atomic orbitals -- Mathematical models
- Atoms -- Mathematical models
- Atrazine -- Environmental aspects -- United States -- Mathematical models
- Atrazine -- Environmental aspects | Mathematical models
- Attention -- Mathematical models
- Attention -- Mathematical models
- Attics -- Heating and ventilation | Mathematical models
- Attitude change -- Mathematical models
- Auctions -- Mathematical models
- Auctions -- Mathematical models
- Australia -- Economic conditions -- 1945- -- Mathematical models
- Australia -- Emigration and immigration | Mathematical models
- Automatic control -- Mathematical models
- Automatic control -- Mathematical models
- Automatic control -- Mathematical models
- Automatic control -- Mathematical models -- Congresses
- Automatic machinery -- Mathematical models
- Automatic machinery -- Mathematical models
- Automatic tracking -- Mathematical models
- Automatic tracking -- Mathematical models
- Automatic tracking -- Mathematical models -- Congresses
- Automobile driving -- Braking | Mathematical models
- Automobile driving -- Lane changing | Mathematical models
- Automobile travel -- California | Los Angeles -- Mathematical models
- Automobile travel -- Mathematical models
- Automobiles -- Automatic control | Mathematical models
- Automobiles -- Collision avoidance systems | Mathematical models
- Automobiles -- Dynamics | Mathematical models
- Automobiles -- Fuel consumption | Mathematical models
- Automobiles -- Fuel consumption | Mathematical models
- Automobiles -- Handling characteristics -- United States -- Mathematical models
- Automobiles -- Handling characteristics | Mathematical models
- Automobiles -- Motors | Exhaust gas -- United States -- Mathematical models
- Automobiles -- Motors | Exhaust gas -- United States -- Motors | Mathematical models
- Automobiles -- Motors | Exhaust gas | Mathematical models
- Automobiles -- Motors | Exhaust gas | Mathematical models
- Automobiles -- Motors | Mathematical models
- Automobiles -- Seat belts | Evaluation | Mathematical models
- Automobiles -- United States -- Crashworthiness | Mathematical models
- Automobiles -- United States -- Fuel consumption | Mathematical models
- Automobiles -- United States -- Safety appliances | Mathematical models
- Automobiles -- United States -- Seat belts | Effectiveness | Mathematical models
- Autonomous robots -- Mathematical models
- Avalanches -- Mathematical models
- Axial flow -- Mathematical models
- Axial flow compressors -- Mathematical models
- Backwater -- Mathematical models
- Bacteria -- Physiology | Mathematical models
- Bacterial pollution of water -- Ohio -- Mathematical models
- Balance of payments -- Mathematical models
- Balance of payments -- Mathematical models
- Balance of power -- Mathematical models
- Ballistics -- Mathematical models
- Bank capital -- Mathematical models
- Bank capital -- Mathematical models
- Bank loans -- Mathematical models
- Bank loans -- Mathematical models
- Banks and banking -- Mathematical models
- Banks and banking -- Mathematical models
- Banks and banking, International -- Mathematical models
- Barrier island ecology -- Alabama | Dauphin Island -- Mathematical models
- Basal cell carcinoma -- Mathematical models
- Base flow (Hydrology) -- Virginia -- Mathematical models
- Baseball -- Mathematical models
- Basins (Geology) -- Colorado | Denver Metropolitan Area -- Mathematical models
- Bathymetric maps -- Mathematical models | Data processing
- Battery chargers -- Mathematical models
- Battle casualties -- Mathematical models
- Battle casualties -- Mathematical models
- Bayesian statistical decision theory -- Mathematical models
- Beach erosion -- Michigan | Netherlands -- Mathematical models
- Beam optics -- Mathematical models
- Beamforming -- Mathematical models
- Bearings (Machinery) -- Vibration | Mathematical models
- Behavioral scientists -- Supply and demand | Mathematical models
- Behaviorism (Psychology) -- Mathematical models -- Congresses
- Benchmarking (Management) -- Mathematical models
- Bicycle lanes -- Planning | Mathematical models
- Big business -- United States -- Mathematical models
- Billiards -- Mathematical models
- Binary systems (Metallurgy) -- Absorption and adsorption | Mathematical models
- Binary systems (Metallurgy) -- Mathematical models
- Binary systems (Metallurgy) -- Reactivity | Mathematical models
- Binders (Materials) -- Testing | Mathematical models
- Biochemical engineering -- Mathematical models
- Biochemical engineering -- Mathematical models
- Biochemical oxygen demand -- Catawba River (N.C. and S.C.) -- Mathematical models
- Biochemical oxygen demand -- Mathematical models
- Biochemical oxygen demand -- Mathematical models
- Biochemistry -- Mathematical models
- Biochemistry -- Mathematical models
- Biochemistry -- Mathematical models
- Biochemistry -- Mathematical models -- Periodicals
- Biocomputers -- Mathematical models
- Biodegradation -- Mathematical models
- Biodegradation -- Mathematical models
- Biodegradation -- United States -- Mathematical models
- Biodiversity -- Mathematical models
- Biodiversity -- Mathematical models
- Biodiversity -- Mathematical models
- Bioenergetics -- Bering Sea -- Mathematical models
- Biogeography -- Mathematical models
- Biogeography -- Mathematical models
- Bioinformatics -- Mathematical models
- Biological control systems -- Mathematical models
- Biological invasions -- Mathematical models
- Biological invasions -- Mathematical models
- Biological systems -- Mathematical models
- Biological systems -- Mathematical models
- Biological systems -- Mathematical models -- Handbooks, manuals, etc
- Biological systems -- Mathematical models -- Periodicals
- Biological transport -- Mathematical models
- Biological transport -- Mathematical models
- Biological transport -- Mathematical models -- Congresses
- Biology -- Mathematical models
- Biology -- Mathematical models
- Biology -- Mathematical models -- Congresses
- Biology -- Mathematical models -- Periodicals
- Biology, Economic -- Mathematical models
- Biomass -- Alaska -- Mathematical models
- Biomass -- Utilization | Mathematical models
- Biomass conversion -- Mathematical models
- Biomass energy -- Mathematical models
- Biomass energy -- Mathematical models -- Handbooks, manuals, etc
- Biomass energy industries -- Economic aspects | Mathematical models
- Biomechanics -- Mathematical models
- Biomechanics -- Mathematical models
- Biomedical engineering -- Mathematical models
- Biomedical engineering -- Mathematical models
- Biomolecules -- Structure | Mathematical models -- Congresses
- Biophysics -- Mathematical models
- Biophysics -- Mathematical models
- Bioreactors -- Mathematical models
- Bioreactors -- Mathematical models
- Bioremediation -- Mathematical models
- Bioremediation -- Mathematical models
- Biosensors -- Mathematical models
- Biotechnology -- Mathematical models
- Bioterrorism -- Mathematical models
- Bioterrorism -- Mathematical models -- Congresses
- Biotic communities -- Koocanusa, Lake (B.C. and Mont.) -- Mathematical models
- Biotic communities -- Mathematical models
- Biotic communities -- Mathematical models
- Biotic communities -- Yukon River Watershed (Yukon and Alaska) -- Mathematical models
- Bipedalism -- Mathematical models
- Bipolar transistors -- Mathematical models
- Bipolar transistors -- Mathematical models
- Bipolar transistors -- Mathematical models -- Congresses
- Bird populations -- Mathematical models
- Bird populations -- Southern States -- Mathematical models
- Birds -- Habitat -- Black Hills (S.D. and Wyo.) -- Mathematical models
- Birds -- Habitat -- South Dakota -- Mathematical models
- Birds -- Habitat -- United States -- Mathematical models
- Bistatic radar -- Mathematical models
- Bistatic radar -- Mathematical models
- Black holes (Astronomy) -- Mathematical models
- Black spruce -- Maine -- Mathematical models
- Blackjack (Game) -- Mathematical models
- Blades -- Design and construction | Mathematical models
- Blast effect -- Mathematical models
- Blasting -- Mathematical models
- Blind source separation -- Mathematical models
- Blood alcohol -- Mathematical models
- Blood-brain barrier -- Mathematical models
- Body fluid flow -- Mathematical models
- Body fluid flow -- Mathematical models
- Body temperature -- Mathematical models
- Boilers -- Mathematical models
- Boiling water reactors -- Accidents | Mathematical models
- Boiling water reactors -- Design and construction | Mathematical models
- Boiling water reactors -- Mathematical models
- Boiling water reactors -- Mathematical models
- Boiling water reactors -- Mathematical models | Computer programs -- Handbooks, manuals, etc
- Boiling water reactors -- Mathematical models | Data processing
- Bonds -- Mathematical models
- Bonds -- Mathematical models
- Bonds -- Valuation | Mathematical models
- Bonds -- Valuation | Mathematical models
- Bose-Einstein condensation -- Mathematical models -- Congresses
- Bosons -- Mathematical models
- Botany -- Mathematical models
- Botany -- Mathematical models
- Boundary layer (Meteorology) -- Mathematical models
- Boundary layer -- Mathematical models
- Brain -- Imaging | Mathematical models
- Brain -- Imaging | Mathematical models -- Congresses
- Brain -- Mathematical models
- Brain -- Mathematical models
- Branding (Marketing) -- Mathematical models
- Breakwaters -- Mathematical models
- Breakwaters -- Mathematical models
- Bridges -- Abutments | Mathematical models
- Bridges -- Bearings | Mathematical models
- Bridges -- Design and construction | Mathematical models
- Bridges -- Earthquake effects | Mathematical models
- Bridges -- Live loads -- United States -- Mathematical models
- Bridges -- Live loads | Mathematical models
- Brittleness -- Mathematical models
- Broadband communication systems -- Mathematical models
- Broadband communication systems -- Mathematical models
- Broadcast advertising -- United States -- Mathematical models
- Broadcasting -- United States -- Mathematical models
- Brownian motion processes -- Mathematical models
- Brownian movements -- Mathematical models
- Bubbles -- Mathematical models
- Bubbles -- Mathematical models
- Buckling (Mechanics) -- Mathematical models
- Budget -- United States -- Mathematical models
- Building failures -- Mathematical models
- Building materials -- Energy conservation | Mathematical models
- Building materials -- Mathematical models -- Congresses
- Building, Fireproof -- Mathematical models
- Buildings -- Deterioration | Mathematical models
- Buildings -- Earthquake effects | Mathematical models
- Buildings -- Earthquake effects | Mathematical models
- Buildings -- Energy conservation | Mathematical models
- Buildings -- Energy conservation | Mathematical models
- Buildings -- Energy consumption | Mathematical models
- Buildings -- Energy consumption | Mathematical models
- Buildings -- Evacuation | Mathematical models
- Buildings -- Heating | Mathematical models
- Buildings -- Location | Mathematical models
- Buildings -- Mathematical models
- Buildings -- Performance | Mathematical models
- Buildings -- Thermal properties | Mathematical models
- Buildings, Reinforced concrete -- Earthquake effects | Mathematical models
- Bulk solids flow -- Mathematical models
- Buoyant convection -- Mathematical models
- Bus lines -- California | Los Angeles -- Mathematical models
- Bus lines -- Mathematical models
- Bus lines -- United States -- Mathematical models
- Buses -- Mathematical models
- Buses -- Reliability | Mathematical models
- Business -- Case studies -- Mathematical models
- Business -- Data processing | Mathematical models
- Business -- Mathematical models
- Business -- Mathematical models
- Business -- Mathematical models -- Congresses
- Business -- Mathematical models -- Periodicals
- Business -- Mathematical models | Research -- Periodicals
- Business cycles -- Mathematical models
- Business cycles -- Mathematical models
- Business cycles -- Mathematical models -- Congresses
- Business cycles -- Mathematical models | History
- Business cycles -- United States -- Mathematical models
- Business enterprises -- Finance | Mathematical models
- Business enterprises -- Finance | Mathematical models
- Business enterprises -- Forecasting | Mathematical models -- Handbooks, manuals, etc
- Business enterprises -- Valuation | Mathematical models
- Business enterprises -- Valuation | Mathematical models
- Business forecasting -- Mathematical models
- Business forecasting -- Mathematical models
- Business logistics -- Decision making | Mathematical models
- Business logistics -- Management | Mathematical models
- Business logistics -- Mathematical models
- Business logistics -- Mathematical models
- Business losses -- Mathematical models
- Business planning -- Mathematical models
- Calcium -- Metabolism | Mathematical models
- Calcium -- Physiological effect | Mathematical models
- Calcium -- Physiological transport | Mathematical models
- Calibration -- Mathematical models
- Canada -- Emigration and immigration | Mathematical models
- Canals -- Florida | Miami-Dade County -- Mathematical models
- Cancer -- Mathematical models
- Cancer -- Mathematical models
- Cancer -- Research | Mathematical models
- Cancer cells -- Mathematical models
- Capacitors -- Mathematical models
- Capital -- Mathematical models
- Capital -- Mathematical models
- Capital -- United States -- Mathematical models
- Capital investments -- Decision making | Mathematical models
- Capital investments -- Mathematical models
- Capital investments -- United States -- Mathematical models
- Capital market -- Mathematical models
- Capital market -- Mathematical models
- Capital market -- Mathematical models
- Capital movements -- Mathematical models
- Capital movements -- Mathematical models
- Car pools -- Mathematical models
- Car pools -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models -- Congresses
- Carbon cycle (Biogeochemistry) -- United States -- Measurement | Mathematical models
- Carbon dioxide -- Thermodynamics | Mathematical models
- Carbon dioxide mitigation -- United States -- Mathematical models
- Carbon sequestration -- Mathematical models
- Carbon sequestration -- United States -- Mathematical models
- Carcinogenesis -- Mathematical models
- Carcinogenesis -- Mathematical models
- Carcinogenesis -- Mathematical models -- Congresses
- Cardiopulmonary system -- Mathematical models
- Cardiovascular system -- Mathematical models
- Carrier waves -- Mathematical models
- Cash flow -- Mathematical models
- Cash flow -- Mathematical models
- Cash management -- Mathematical models
- Cash management -- Mathematical models
- Catalysis -- Mathematical models
- Catalysis -- Mathematical models
- Catalysis -- Mathematical models
- Causation -- Economic aspects | Mathematical models
- Cavity resonators -- Mathematical models
- Ceilings -- Thermal properties | Mathematical models
- Celestial mechanics -- Mathematical models
- Cell organelles -- Identification -- Mathematical models
- Cell phone systems -- Antennas | Mathematical models
- Cell populations -- Mathematical models
- Cell populations -- Mathematical models
- Cell proliferation -- Mathematical models -- Congresses
- Cells -- Growth | Mathematical models
- Cells -- Measurement | Mathematical models
- Cells -- Mechanical properties | Mathematical models
- Cellular automata -- Mathematical models
- Cellular automata -- Mathematical models
- Cellular control mechanisms -- Mathematical models
- Cellular signal transduction -- Mathematical models
- Cellular signal transduction -- Mathematical models
- Cellular signal transduction -- Mathematical models -- Congresses
- Cement -- Testing | Mathematical models
- Centrifuges -- Mathematical models
- Ceramic materials -- Thermomechanical properties | Mathematical models
- Chance -- Mathematical models
- Change (Psychology) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models -- Congresses
- Chaotic behavior in systems -- Mathematical models
- Chaotic behavior in systems -- Mathematical models
- Chaotic behavior in systems -- Mathematical models
- Chaotic behavior in systems -- Mathematical models -- Congresses
- Charge density waves -- Mathematical models
- Charge transfer -- Mathematical models
- Charitable bequests -- Mathematical models
- Charitable bequests -- United States -- Mathematical models
- Chattahoochee River -- Mathematical models
- Cheese -- Purchasing -- United States -- Mathematical models
- Chemical bonds -- Mathematical models
- Chemical engineering -- Mathematical models
- Chemical engineering -- Mathematical models
- Chemical engineering -- Mathematical models
- Chemical engineering -- Mathematical models -- Congresses
- Chemical equilibrium -- Mathematical models
- Chemical kinetics -- Mathematical models
- Chemical plants -- Mathematical models
- Chemical plants -- Mathematical models
- Chemical process control -- Mathematical models
- Chemical process control -- Mathematical models
- Chemical processes -- Mathematical models
- Chemical processes -- Mathematical models
- Chemical processes -- Mathematical models -- Handbooks, manuals, etc
- Chemical processes -- Safety measures | Mathematical models
- Chemical reactions -- Mathematical models
- Chemical reactions -- Mathematical models
- Chemical reactors -- Fluid dynamics | Mathematical models
- Chemical reactors -- Mathematical models
- Chemical reactors -- Mathematical models
- Chemical spills -- Environmental aspects | Mathematical models
- Chemical weapons -- Environmental aspects | Mathematical models -- Congresses
- Chemicals -- Fires and fire prevention | Mathematical models
- Chemistry -- Mathematical models -- Congresses
- Chemistry, Analytic -- Mathematical models
- Chemistry, Organic -- Mathematical models
- Chemistry, Organic -- Mathematical models
- Chemistry, Physical and theoretical -- Mathematical models
- Child restraint systems in automobiles -- Evaluation | Mathematical models
- China -- Economic conditions | Mathematical models
- Chlorine -- Environmental aspects | Mathematical models
- Choice (Psychology) -- Mathematical models
- Choice (Psychology) -- Mathematical models
- Choice of transportation -- Forecasting | Mathematical models
- Choice of transportation -- Forecasting | Mathematical models -- Congresses
- Choice of transportation -- Mathematical models
- Choice of transportation -- Mathematical models
- Choice of transportation -- Mathematical models -- Congresses
- Choice of transportation -- Mathematical models | Congresses
- Choice of transportation -- United States -- Mathematical models | Planning
- Chromosome replication -- Mathematical models
- Church schools -- United States -- Finance | Mathematical models
- Circadian rhythms -- Mathematical models
- Cities and towns -- Growth | Mathematical models
- Cities and towns -- Growth | Mathematical models -- Congresses
- Cities and towns -- Mathematical models
- Cities and towns -- Mathematical models
- Cities and towns -- United States -- Growth | Mathematical models
- City and town life -- Mathematical models
- City planning -- Environmental aspects | Mathematical models
- City planning -- Mathematical models
- City planning -- Mathematical models
- City traffic -- Mathematical models
- Civil engineering -- Mathematical models
- Civil engineering -- Mathematical models -- Congresses
- Civil engineering -- Mathematical models -- Periodicals
- Classification -- Mathematical models
- Climate change mitigation -- Mathematical models
- Climatic changes -- America -- Mathematical models -- Periodicals
- Climatic changes -- California, Southern -- Mathematical models
- Climatic changes -- Forecasting | Mathematical models
- Climatic changes -- Health aspects | Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models -- Congresses
- Climatic changes -- North America -- Forecasting | Mathematical models
- Climatic changes -- North America -- Mathematical models
- Climatic changes -- Southern States -- Mathematical models
- Climatic changes -- United States -- Mathematical models
- Climatic changes -- West (U.S.) -- Mathematical models
- Climatic extremes -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models -- Periodicals
- Closed ecological systems -- Mathematical models
- Cloud physics -- Mathematical models -- Congresses
- Cluster analysis -- Mathematical models
- Coal -- Combustion | Environmental aspects | Mathematical models
- Coal -- Combustion | Mathematical models
- Coal -- Drying | Mathematical models
- Coal gasification -- Mathematical models
- Coal gasification -- United States -- Mathematical models
- Coal gasification, Underground -- Mathematical models
- Coal mines and mining -- Economic aspects | Mathematical models
- Coal mines and mining -- Electric equipment | Mathematical models
- Coal mines and mining -- Environmental aspects -- West Virginia -- Mathematical models
- Coal mines and mining -- Mathematical models
- Coal mines and mining -- United States -- Costs | Mathematical models
- Coal slurry pipelines -- Mathematical models
- Coal trade -- Mathematical models
- Coal trade -- Mathematical models
- Coal trade -- United States -- Mathematical models
- Coal-fired power plants -- Environmental aspects | Mathematical models
- Coal-fired power plants -- Mathematical models | Evaluation
- Coal-handling machinery -- Mathematical models
- Coalitions -- Mathematical models
- Coast changes -- Alabama | Dauphin Island -- Mathematical models
- Coast changes -- Mathematical models
- Coast changes -- Mathematical models
- Coast changes -- Mathematical models -- Congresses
- Coast changes -- United States -- Mathematical models
- Coastal engineering -- Mathematical models
- Coastal plains -- Southern States -- Mathematical models
- Coasts -- Mathematical models -- Congresses
- Coasts -- Oregon -- Mathematical models
- Coastwise shipping -- Russia, Northern -- Mathematical models
- Coaxial cables -- Materials | Testing | Mathematical models
- Coaxial cables -- Testing | Mathematical models
- Cocaine industry -- Mathematical models
- Coevolution -- Mathematical models
- Coffee industry -- Côte d'Ivoire -- Mathematical models
- Cognition -- Mathematical models
- Cognition -- Mathematical models
- Cognitive learning theory -- Mathematical models
- Cognitive neuroscience -- Mathematical models
- Cognitive radio networks -- Mathematical models
- Coke plants -- Costs | Mathematical models
- Collective bargaining -- Mathematical models
- Collective bargaining -- Mathematical models
- Collective behavior -- Economic aspects -- United States -- Mathematical models
- Collective behavior -- Mathematical models
- College graduates -- Employment -- Italy -- Mathematical models
- Collisions (Nuclear physics) -- Mathematical models
- Colloids -- Diffusion rate | Mathematical models
- Colloids -- Mathematical models
- Columbia Glacier (Alaska) -- Mathematical models
- Columns -- Testing | Mathematical models
- Combat -- Mathematical models
- Combat -- Mathematical models
- Combined sewer overflows -- Mathematical models
- Combined sewers -- Mathematical models
- Combined sewers -- Mathematical models -- Congresses
- Combustion -- Mathematical models
- Combustion -- Mathematical models
- Combustion -- Mathematical models -- Congresses
- Combustion -- Mathematical models | Data processing
- Combustion -- Measurement | Mathematical models
- Combustion -- Research | Mathematical models
- Combustion -- United States -- Mathematical models
- Combustion chambers -- Mathematical models
- Combustion deposits in engines -- Mathematical models
- Combustion engineering -- Mathematical models
- Combustion engineering -- Mathematical models
- Combustion gases -- Mathematical models
- Combustion, Spontaneous -- Mathematical models
- Command and control systems -- Mathematical models
- Command of troops -- Mathematical models
- Commerce -- Mathematical models
- Commercial buildings -- Energy consumption | Mathematical models
- Commercial policy -- Mathematical models
- Commercial policy -- Mathematical models
- Commodity exchanges -- Mathematical models
- Commodity exchanges -- Mathematical models
- Commodity exchanges -- Mathematical models -- Congresses
- Commodity futures -- Mathematical models
- Commodity futures -- Mathematical models
- Communicable diseases -- Epidemiology | Mathematical models
- Communicable diseases -- Epidemiology | Mathematical models
- Communicable diseases -- Mathematical models
- Communicable diseases -- Mathematical models
- Communicable diseases -- Transmission | Mathematical models
- Communicable diseases -- Transmission | Mathematical models
- Communicable diseases in newborn infants -- Mathematical models
- Communicable diseases in the fetus -- Mathematical models
- Communication -- Mathematical models
- Communication -- Network analysis | Mathematical models
- Communication -- Network analysis | Mathematical models
- Communities -- Mathematical models
- Commuting -- Mathematical models
- Compacting -- Mathematical models
- Competition -- Government policy | Mathematical models
- Competition -- Mathematical models
- Competition -- Mathematical models
- Competition -- United States -- Mathematical models
- Competition, Imperfect -- Mathematical models
- Competition, Imperfect -- Mathematical models
- Competition, Unfair -- Mathematical models
- Component software -- Mathematical models
- Composite construction -- Fatigue | Mathematical models
- Composite construction -- Mathematical models
- Composite construction -- Mathematical models -- Congresses
- Composite construction -- Vibration | Mathematical models
- Composite materials -- Bonding | Mathematical models
- Composite materials -- Cracking | Mathematical models
- Composite materials -- Defects | Mathematical models
- Composite materials -- Fatigue | Mathematical models
- Composite materials -- Fracture | Mathematical models
- Composite materials -- Fracture | Mathematical models
- Composite materials -- Mathematical models
- Composite materials -- Mathematical models
- Composite materials -- Mathematical models -- Congresses
- Composite materials -- Mechanical properties | Mathematical models
- Composite materials -- Moisture | Mathematical models
- Composite materials -- Noise | Mathematical models
- Compound semiconductors -- Mathematical models
- Compound semiconductors -- Mathematical models
- Comprehension (Theory of knowledge) -- Mathematical models
- Comprehension (Theory of knowledge) -- Mathematical models -- Congresses
- Compressed air -- Mathematical models
- Compressibility -- Mathematical models
- Compressibility -- Mathematical models
- Compton effect -- Mathematical models
- Computational fluid dynamics -- Mathematical models
- Computational grids (Computer systems) -- Mathematical models
- Computational intelligence -- Mathematical models
- Computational linguistics -- Mathematical models
- Computational neuroscience -- Computer simulation | Mathematical models -- Case studies
- Computational neuroscience -- Mathematical models
- Computer architecture -- Mathematical models
- Computer industry -- Personnel management | Mathematical models
- Computer networks -- Design and construction | Mathematical models
- Computer networks -- Mathematical models
- Computer networks -- Mathematical models
- Computer networks -- Mathematical models -- Congresses
- Computer networks -- Security measures | Mathematical models
- Computer programs -- Mathematical models
- Computer programs -- Mathematical models -- Handbooks, manuals, etc
- Computer scheduling -- Mathematical models
- Computer science -- Mathematical models
- Computer science -- Mathematical models
- Computer science -- Mathematical models -- Congresses
- Computer security -- Mathematical models
- Computer simulation -- Mathematical models
- Computer simulation -- Mathematical models -- Congresses
- Computer software -- Mathematical models
- Computer software -- Mathematical models
- Computer system failures -- Mathematical models
- Computer systems -- Reliability | Mathematical models
- Computer systems -- Verification | Mathematical models
- Computer vision -- Mathematical models
- Computer vision -- Mathematical models
- Computer vision -- Mathematical models -- Handbooks, manuals, etc
- Computer vision -- Mathematical models -- Periodicals
- Concepts -- Mathematical models
- Concrete -- Additives | Mathematical models
- Concrete -- Cracking | Mathematical models
- Concrete -- Deterioration | Mathematical models
- Concrete -- Drying | Mathematical models
- Concrete -- Effect of radiation on | Mathematical models
- Concrete -- Fracture | Mathematical models
- Concrete -- Mathematical models -- Handbooks, manuals, etc
- Concrete -- Permeability | Mathematical models
- Concrete -- Plastic properties | Mathematical models
- Concrete bridges -- Cracking | Mathematical models
- Concrete bridges -- Effect of temperature on | Mathematical models
- Concrete bridges -- Floors | Design and construction | Mathematical models
- Concrete bridges -- Foundations and piers | Design and construction | Mathematical models
- Concrete bridges -- Maintenance and repair | Mathematical models
- Concrete construction -- Deterioration -- United States -- Mathematical models
- Concrete construction -- Deterioration | Mathematical models
- Concrete construction -- Mathematical models
- Concrete construction -- Mathematical models
- Concrete construction -- Mathematical models
- Concrete construction -- Mathematical models -- Congresses
- Concrete panels -- Testing | Mathematical models
- Concrete slabs -- Testing | Mathematical models
- Concrete walls -- Earthquake effects | Mathematical models
- Concrete walls -- Testing | Mathematical models
- Condensed matter -- Mathematical models
- Condensed matter -- Mathematical models
- Condensed matter -- Mathematical models -- Congresses
- Condensed matter -- Mathematical models | Congresses
- Conditioned response -- Computer simulation | Mathematical models -- Case studies
- Conditioned response -- Mathematical models -- Congresses
- Cone -- Aerodynamics | Mathematical models
- Confidence intervals -- Mathematical models
- Conflict management -- Mathematical models
- Conformity -- Mathematical models
- Congestion pricing -- Mathematical models
- Congestion pricing -- Mathematical models
- Conglomerate corporations -- Management | Mathematical models
- Conifers -- Idaho -- Growth | Mathematical models
- Conifers -- Rocky Mountains -- Growth | Mathematical models
- Conifers -- Rocky Mountains -- Measurement | Mathematical models
- Consciousness -- Mathematical models
- Conservation of natural resources -- Mathematical models
- Conservation of natural resources -- Mathematical models -- Periodicals
- Conservation of natural resources -- United States -- Mathematical models
- Consolidation and merger of corporations -- Finance | Mathematical models
- Consolidation and merger of corporations -- Great Britain -- Mathematical models
- Consolidation and merger of corporations -- Mathematical models
- Constrained optimization -- Mathematical models
- Constraints (Physics) -- Mathematical models
- Construction industry -- Management | Mathematical models
- Construction industry -- Mathematical models
- Construction industry -- Mathematical models
- Consumer behavior -- Mathematical models
- Consumer behavior -- Mathematical models
- Consumer behavior -- United States -- Mathematical models
- Consumer price indexes -- United States -- Mathematical models
- Consumers -- Attitudes | Mathematical models
- Consumers' preferences -- Mathematical models
- Consumers' preferences -- Mathematical models
- Consumers' preferences -- Mathematical models -- Congresses
- Consumers' preferences -- United States -- Mathematical models
- Consumption (Economics) -- Developing countries -- Mathematical models
- Consumption (Economics) -- Korea (North) -- Mathematical models
- Consumption (Economics) -- Mathematical models
- Consumption (Economics) -- Mathematical models
- Consumption (Economics) -- Mathematical models -- OECD countries
- Consumption (Economics) -- United States -- Mathematical models
- Contact angle -- Mathematical models
- Contact mechanics -- Mathematical models
- Contact mechanics -- Mathematical models
- Contagion (Social psychology) -- Mathematical models -- Popular works
- Containers -- Design and construction | Mathematical models
- Contamination (Technology) -- Mathematical models
- Contingent valuation -- Mathematical models
- Continuous casting -- Mathematical models
- Continuous casting -- Mathematical models
- Continuum damage mechanics -- Mathematical models
- Continuum mechanics -- Mathematical models
- Continuum mechanics -- Mathematical models
- Contracts -- Mathematical models
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/KBKhQMX-yuA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Topic"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/KBKhQMX-yuA/">Mathematical models</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Topic Mathematical models
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/KBKhQMX-yuA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Topic"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/KBKhQMX-yuA/">Mathematical models</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>