Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai
Resource Information
The instance Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai represents a material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library. This resource is a combination of several types including: Instance, Electronic.
The Resource
Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai
Resource Information
The instance Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai represents a material embodiment of a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library. This resource is a combination of several types including: Instance, Electronic.
- Label
- Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai
- Title remainder
- advances in materials synthesis and device applications
- Statement of responsibility
- edited by Wen Lu, Jong-Beom Baek, Liming Dai
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1. Fullerenes, Higher Fullerenes, and Their Hytrids: Synthesis, Characterization, and Environmental Considerations -- 1.1. Introduction -- 1.2. Fullerene, Higher Fullerenes, and Nanohybrids: Structures and Historical Perspective -- 1.2.1.C60 Fullerene -- 1.2.2. Higher Fullerenes -- 1.2.3. Fullerene-Based Nanohybrids -- 1.3. Synthesis and Characterization -- 1.3.1. Fullerenes and Higher Fullerenes -- 1.3.1.1. Carbon Soot Synthesis -- 1.3.1.2. Extraction, Separation, and Purification -- 1.3.1.3. Chemical Synthesis Processes -- 1.3.1.4. Fullerene-Based Nanohybrids -- 1.3.2. Characterization -- 1.3.2.1. Mass Spectroscopy -- 1.3.2.2. NMR -- 1.3.2.3. Optical Spectroscopy -- 1.3.2.4. HPLC -- 1.3.2.5. Electron Microscopy -- 1.3.2.6. Static and Dynamic Light Scattering -- 1.4. Energy Applications -- 1.4.1. Solar Cells and Photovoltaic Materials -- 1.4.2. Hydrogen Storage Materials -- 1.4.3. Electronic Components (Batteries, Capacitors, and Open-Circuit Voltage Applications)
- 1.4.4. Superconductivity, Electrical, and Electronic Properties Relevant to Energy Applications -- 1.4.5. Photochemical and Photophysical Properties Pertinent for Energy Applications -- 1.5. Environmental Considerations for Fullerene Synthesis and Processing -- 1.5.1. Existing Environmental Literature for C60 -- 1.5.2. Environmental Literature Status for Higher Fullerenes and NHs -- 1.5.3. Environmental Considerations -- 1.5.3.1. Consideration for Solvents -- 1.5.3.2. Considerations for Derivatization -- 1.5.3.3. Consideration for Coatings -- References -- 2. Carbon Nanotubes -- 2.1. Synthesis of Carbon Nanotubes -- 2.1.1. Introduction and Structure of Carbon Nanotube -- 2.1.2. Arc Discharge and Laser Ablation -- 2.1.3. Chemical Vapor Deposition -- 2.1.4. Aligned Growth -- 2.1.5. Selective Synthesis of Carbon Nanotubes -- 2.1.6. Summary -- 2.2. Characterization of Nanotubes -- 2.2.1. Introduction -- 2.2.2. Spectroscopy -- 2.2.2.1. Raman Spectroscopy
- 2.2.2.2. Optical Absorption (UV-Vis-NIR) -- 2.2.2.3. Photoluminescence Spectroscopy -- 2.2.3. Microscopy -- 2.2.3.1. Scanning Tunneling Microscopy and Transmission Electron Microscopy -- 2.3. Summary -- References -- 3. Synthesis and Characterization of Graphene -- 3.1. Introduction -- 3.2. Overview of Graphene Synthesis Methodologies -- 3.2.1. Mechanical Exfoliation -- 3.2.2. Chemical Exfoliation -- 3.2.3. Chemical Synthesis: Graphene from Reduced Graphene Oxide -- 3.2.4. Direct Chemical Synthesis -- 3.2.5. CVD Process -- 3.2.5.1. Graphene Synthesis by CVD Process -- 3.2.5.2. Graphene Synthesis by Plasma CVD Process -- 3.2.5.3. Grain and GBs in CVD Graphene -- 3.2.6. Epitaxial Growth of Graphene on SiC Surface -- 3.3. Graphene Characterizations -- 3.3.1. Optical Microscopy -- 3.3.2. Raman Spectroscopy -- 3.3.3. High Resolution Transmission Electron Microscopy -- 3.3.4. Scanning Probe Microscopy -- 3.4. Summary and Outlook -- References
- 4. Doping Carbon Nanomaterials with Heteroatoms -- 4.1. Introduction -- 4.2. Local Bonding of the Dopants -- 4.3. Synthesis of Heterodoped Nanocarbons -- 4.4. Characterization of Heterodoped Nanotubes and Graphene -- 4.5. Potential Applications -- 4.6. Summary and Outlook -- References -- 5. High-Performance Polymer Solar Cells Containing Carbon Nanomaterials -- 5.1. Introduction -- 5.2. Carbon Nanomaterials as Transparent Electrodes -- 5.2.1. CNT Electrode -- 5.2.2. Graphene Electrode -- 5.2.3. Graphene/CNT Hybrid Electrode -- 5.3. Carbon Nanomaterials as Charge Extraction Layers -- 5.4. Carbon Nanomaterials in the Active Layer -- 5.4.1. Carbon Nanomaterials as an Electron Acceptor -- 5.4.2. Carbon Nanomaterials as Additives -- 5.4.3. Donor/Acceptor Functionalized with Carbon Nanomaterials -- 5.5. Concluding Remarks -- Acknowledgments -- References -- 6. Graphene for Energy Solutions and Its Printable Applications -- 6.1. Introduction to Graphene
- 6.2. Energy Harvesting from Solar Cells -- 6.2.1. DSSCs -- 6.2.2. Graphene and DSSCs -- 6.2.2.1. Counter Electrode -- 6.2.2.2. Photoanode -- 6.2.2.3. Transparent Conducting Oxide -- 6.2.2.4. Electrolyte -- 6.3. OPV Devices -- 6.3.1. Graphene and OPVs -- 6.3.1.1. Transparent Conducting Oxide -- 6.3.1.2. BHJ -- 6.3.1.3. Hole Transport Layer -- 6.4. Lithium-Ion Batteries -- 6.4.1. Graphene and Lithium-Ion Batteries -- 6.4.1.1. Anode Material -- 6.4.1.2. Cathode Material -- 6.4.2. Li-S and Li-O2 Batteries -- 6.5. Supercapacitors -- 6.5.1. Graphene and Supercapacitors -- 6.6. Graphene Inks -- 6.7. Conclusions -- References -- 7. Quantum Dot and Heterojunction Solar Cells Containing Carbon Nanomaterials -- 7.1. Introduction -- 7.2. QD Solar Cells Containing Carbon Nanomaterials -- 7.2.1. CNTs and Graphene as TCE in QD Solar Cells -- 7.2.1.1. CNTs as TCE Material in QD Solar Cells -- 7.2.1.2. Graphene as TCE Material in QD Solar Cells
- 7.2.2. Carbon Nanomaterials and QD Composites in Solar Cells -- 7.2.2.1.C60 and QD Composites -- 7.2.2.2. CNTs and QD Composites -- 7.2.2.3. Graphene and QD Composites -- 7.2.3. Graphene QDs Solar Cells -- 7.2.3.1. Physical Properties of GQDs -- 7.2.3.2. Synthesis of GQDs -- 7.2.3.3. PV Devices of GQDs -- 7.3. Carbon Nanomaterial/Semiconductor Heterojunction Solar Cells -- 7.3.1. Principle of Carbon/Semiconductor Heterojunction Solar Cells -- 7.3.2.a-C/Semiconductor Heterojunction Solar Cells -- 7.3.3. CNT/Semiconductor Heterojunction Solar Cells -- 7.3.4. GraphenelSemiconcluctot lieteroSunction Solar Cells -- 7.4. Summary -- References -- 8. Fuel Cell Catalysts Based on Carbon Nanomaterials -- 8.1. Introduction -- 8.2. Nanocarbon-Supported Catalysts -- 8.2.1. CNT-Supported Catalysts -- 8.2.2. Graphene-Supported Catalysts -- 8.3. Interface Interaction between Pt Clusters and Graphitic Surface -- 8.4. Carbon Catalyst -- 8.4.1. Catalytic Activity for ORR
- 8.4.2. Effect of N-Dope on O2 Adsorption -- 8.4.3. Effect of N-Dope on the Local Electronic Structure for Pyridinic-N and Graphitic-N -- 8.4.3.1. Pyridinic-N -- 8.4.3.2. Graphitic-N -- 8.4.4. Summary of Active Sites for ORR -- References -- 9. Supercapacitors Based on Carbon Nanomaterials -- 9.1. Introduction -- 9.2. Supercapacitor Technology and Performance -- 9.3. Nanoporous Carbon -- 9.3.1. Supercapacitors with Nonaqueous Electrolytes -- 9.3.2. Supercapacitors with Aqueous Electrolytes -- 9.4. Graphene and Carbon Nanotubes -- 9.5. Nanostructured Carbon Composites -- 9.6. Other Composites with Carbon Nanomaterials -- 9.7. Conclusions -- References -- 10. Lithium-Ion Batteries Based on Carbon Nanomaterials -- 10.1. Introduction -- 10.2. Improving Li-Ion Battery Energy Density -- 10.3. Improvements to Lithium-Ion Batteries Using Carbon Nanomaterials -- 10.3.1. Carbon Nanomaterials as Active Materials -- 10.4. Carbon Nanomaterials as Conductive Additives
- 10.4.1. Current and SOA Conductive Additives -- 10.5. SWCNT Additives to Increase Energy Density -- 10.6. Carbon Nanomaterials as Current Collectors -- 10.6.1. Current Collector Options -- 10.7. Implementation of Carbon Nanomaterial Current Collectors for Standard Electrode Composites -- 10.7.1. Anode: MCMB Active Material -- 10.7.2. Cathode: NCA Active Material -- 10.8. Implementation of Carbon Nanomaterial Current Collectors for Alloying Active Materials -- 10.9. Ultrasonic Bonding for Pouch Cell Development -- 10.10. Conclusion -- References -- 11. Lithium/Sulfur Batteries Based on Carbon Nanomaterials -- 11.1. Introduction -- 11.2. Fundamentals of Lithium/Sulfur Cells -- 11.2.1. Operating Principles -- 11.2.2. Scientific Problems -- 11.2.2.1. Dissolution and Shuttle Effect of Lithium Polysulfides -- 11.2.2.2. Insulating Nature of Sulfur and Li2S -- 11.2.2.3. Volume Change of the Sulfur Electrode during Cycling -- 11.2.3. Research Strategy
- 11.3. Nanostructure Carbon-Sulfur -- 11.3.1. Porous Carbon-Sulfur Composite -- 11.3.2. One-Dimensional Carbon-Sulfur Composite -- 11.3.3. Two-Dimensional Carbon (Graphene)-Sulfur -- 11.3.4. Three-Dimensional Carbon Paper-Sulfur -- 11.3.5. Preparation Method of Sulfur-Carbon Composite -- 11.4. Carbon Layer as a Polysu1fide Separator -- 11.5. Opportunities and Perspectives -- References -- 12. Lithium-Air Batteries Based on Carbon Nanomaterials -- 12.1. Metal-Air Batteries -- 12.2. Li-Air Chemistry -- 12.2.1. Aqueous Electrolyte Cell -- 12.2.2. Nonaqueous Aprotic Electrolyte Cell -- 12.2.3. Mixed Aqueous/Aprotic Electrolyte Cell -- 12.2.4. All Solid-State Cell -- 12.3. Carbon Nanomaterials for Li-Air Cells Cathode -- 12.4. Amorphous Carbons -- 12.4.1. Porous Carbons -- 12.5. Graphitic Carbons -- 12.5.1. Carbon Nanotubes -- 12.5.2. Graphene -- 12.5.3.Composite Air Electrodes -- 12.6. Conclusions -- References -- 13. Carbon-Based Nanomaterials for H2 Storage -- 13.1. Introduction
- 13.2. Hydrogen Storage in Fullerenes -- 13.3. Hydrogen Storage in Carbon Nanotubes -- 13.4. Hydrogen Storage in Graphene-Based Materials -- 13.5. Conclusions -- Acknowledgments -- References
- Control code
- 912045405
- Extent
- 1 online resource
- Form of item
- online
- Isbn
- 9781118981016
- Lccn
- 2015025473
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other control number
- 40025303301
- http://library.link/vocab/ext/overdrive/overdriveId
- 9781118981016
- Record ID
- .b128305873
- Specific material designation
- remote
- System control number
- (OCoLC)912045405
Context
Context of Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming DaiEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/Z67m-UzefVc/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/Z67m-UzefVc/">Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/Z67m-UzefVc/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/Z67m-UzefVc/">Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications, edited by Wen Lu, Jong-Beom Baek, Liming Dai</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>