Decision forests for computer vision and medical image analysis
Resource Information
The work Decision forests for computer vision and medical image analysis represents a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
The Resource
Decision forests for computer vision and medical image analysis
Resource Information
The work Decision forests for computer vision and medical image analysis represents a distinct intellectual or artistic creation found in Missouri University of Science & Technology Library.
- Label
- Decision forests for computer vision and medical image analysis
- Statement of responsibility
- A. Criminisi, J. Shotton, editors
- Language
- eng
- Summary
-
- This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests.--
- This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests.--
- This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests.--
- Decision forests (also known as random forests) are an indispensable tool for automatic image analysis. This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. A number of exercises encourage the reader to practice their skills with the aid of the provided free software library. An international selection of leading researchers from both academia and industry then contribute their own perspectives on the use of decision forests in real-world applications such as pedestrian tracking, human body pose estimation, pixel-wise semantic segmentation of images and videos, automatic parsing of medical 3D scans, and detection of tumors. The book concludes with a detailed discussion on the efficient implementation of decision forests. Topics and features: With a foreword by Prof. Yali Amit and Prof. Donald Geman, recounting their participation in the development of decision forests Introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks Investigates both the theoretical foundations and the practical implementation of decision forests Discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification Includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website Provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner With its clear, tutorial structure and supporting exercises, this text will be of great value to students wishing to learn the basics of decision forests, researchers wanting to become more familiar with forest-based learning, and practitioners interested in exploring modern and efficient image analysis techniques. Dr. A. Criminisi and Dr. J. Shotton are Senior Researchers in the Computer Vision Group at Microsoft Research Cambridge, UK
- Assigning source
-
- Source other than Library of Congress
- Source other than Library of Congress
- Source other than Library of Congress
- Cataloging source
- IND
- Dewey number
- 006.3/7
- LC call number
- TA1634
- LC item number
- .D43 2013
- Series statement
- Advances in computer vision and pattern recognition,
Context
Context of Decision forests for computer vision and medical image analysisEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/ZkxrPhDHVAo/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/ZkxrPhDHVAo/">Decision forests for computer vision and medical image analysis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work Decision forests for computer vision and medical image analysis
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.mst.edu/resource/ZkxrPhDHVAo/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.mst.edu/resource/ZkxrPhDHVAo/">Decision forests for computer vision and medical image analysis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.mst.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.mst.edu/">Missouri University of Science & Technology Library</a></span></span></span></span></div>