Coverart for item
The Resource Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Label
Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
Title
Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
Creator
Subject
Language
eng
Summary
Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently
Member of
Cataloging source
EBLCP
http://library.link/vocab/creatorName
Wyman, Charles E
Dewey number
  • 333.95/39
  • 333.9539
Index
no index present
LC call number
TP248.27.P55 A68 2013
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/subjectName
  • Plant biomass
  • Biomass energy
  • Biomass chemicals
  • Biotechnology
  • Biomass chemicals
  • Biomass energy
  • Biotechnology
  • Plant biomass
  • Biomasse
  • Technische Chemie
  • Vorbehandlung
  • Biomasseverarbeitung
  • Biotechnologie
  • Kraftstoffherstellung
  • Alternativkraftstoff
  • Nachhaltigkeit
  • Biokraftstoff
  • Grüne Chemie
  • Katalyse
  • Industriechemikalie
  • Grundstoff
Label
Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
Instantiates
Publication
Note
5.4.2 Hemicellulose
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; Contents; List of Contributors; Foreword; Series Preface; Preface; Acknowledgements; 1 Introduction; 1.1 Cellulosic Biomass: What and Why?; 1.2 Aqueous Processing of Cellulosic Biomass into Organic Fuels and Chemicals; 1.3 Attributes for Successful Pretreatment; 1.4 Pretreatment Options; 1.5 Possible Blind Spots in the Historic Pretreatment Paradigm; 1.6 Other Distinguishing Features of Pretreatment Technologies; 1.7 Book Approach; 1.8 Overview of Book Chapters; Acknowledgements; References
  • 2 Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment2.1 Our Place in History; 2.2 The Need for Energy from Biomass; 2.3 The Importance of Cellulosic Biomass; 2.4 Potential Barriers; 2.5 Biological and Thermochemical Approaches to the Recalcitrance Barrier; 2.6 Pretreatment; Acknowledgements; References; 3 Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion; 3.1 Introduction; 3.2 Biomass Diversity Leads to Variability in Cell-wall Structure and Composition; 3.3 Processing Options for Accessing the Energy in the Lignocellulosic Matrix
  • 3.4 Plant Tissue and Cell Types Respond Differently to Biomass Conversion3.5 The Basics of Plant Cell-wall Structure; 3.6 Cell-wall Surfaces and Multilamellar Architecture; 3.7 Cell-wall Ultrastructure and Nanoporosity; 3.8 Computer Simulation in Understanding Biomass Recalcitrance; 3.8.1 What Can We Learn from Molecular Simulation?; 3.8.2 Simulations of Lignin; 3.8.3 Simulations of Cellulose; 3.8.4 Simulation of Lignocellulosic Biomass; 3.8.5 Outlook for Biomass Simulations; 3.9 Summary; Acknowledgements; References
  • 4 Biological Conversion of Plants to Fuels and Chemicals and the Effects of Inhibitors4.1 Introduction; 4.2 Overview of Biological Conversion; 4.3 Enzyme and Ethanol Fermentation Inhibitors Released during Pretreatment and/or Enzyme Hydrolysis; 4.3.1 Enzyme Inhibitors Derived from Plant Cell-wall Constituents (Lignin, Soluble Phenolics, and Hemicellulose); 4.3.2 Effect of Furfurals and Acetic Acid as Inhibitors of Ethanol Fermentations; 4.4 Hydrolysis of Pentose Sugar Oligomers Using Solid-acid Catalysts
  • 4.4.1 Application of Solid-acid Catalysts for Hydrolysis of Sugar Oligomers Derived from Lignocelluloses4.4.2 Factors Affecting Efficiency of Solid-acid-catalyzed Hydrolysis; 4.5 Conclusions; Acknowledgements; References; 5 Catalytic Strategies for Converting Lignocellulosic Carbohydrates to Fuels and Chemicals; 5.1 Introduction; 5.2 Biomass Conversion Strategies; 5.3 Criteria for Fuels and Chemicals; 5.3.1 General Considerations in the Production of Fuels and Fuel Additives; 5.3.2 Consideration for Specialty Chemicals; 5.4 Primary Feedstocks and Platforms; 5.4.1 Cellulose
Control code
836404777
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (568 pages)
Form of item
online
Isbn
9780470975824
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
(OCoLC)836404777
Label
Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
Publication
Note
5.4.2 Hemicellulose
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; Contents; List of Contributors; Foreword; Series Preface; Preface; Acknowledgements; 1 Introduction; 1.1 Cellulosic Biomass: What and Why?; 1.2 Aqueous Processing of Cellulosic Biomass into Organic Fuels and Chemicals; 1.3 Attributes for Successful Pretreatment; 1.4 Pretreatment Options; 1.5 Possible Blind Spots in the Historic Pretreatment Paradigm; 1.6 Other Distinguishing Features of Pretreatment Technologies; 1.7 Book Approach; 1.8 Overview of Book Chapters; Acknowledgements; References
  • 2 Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment2.1 Our Place in History; 2.2 The Need for Energy from Biomass; 2.3 The Importance of Cellulosic Biomass; 2.4 Potential Barriers; 2.5 Biological and Thermochemical Approaches to the Recalcitrance Barrier; 2.6 Pretreatment; Acknowledgements; References; 3 Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion; 3.1 Introduction; 3.2 Biomass Diversity Leads to Variability in Cell-wall Structure and Composition; 3.3 Processing Options for Accessing the Energy in the Lignocellulosic Matrix
  • 3.4 Plant Tissue and Cell Types Respond Differently to Biomass Conversion3.5 The Basics of Plant Cell-wall Structure; 3.6 Cell-wall Surfaces and Multilamellar Architecture; 3.7 Cell-wall Ultrastructure and Nanoporosity; 3.8 Computer Simulation in Understanding Biomass Recalcitrance; 3.8.1 What Can We Learn from Molecular Simulation?; 3.8.2 Simulations of Lignin; 3.8.3 Simulations of Cellulose; 3.8.4 Simulation of Lignocellulosic Biomass; 3.8.5 Outlook for Biomass Simulations; 3.9 Summary; Acknowledgements; References
  • 4 Biological Conversion of Plants to Fuels and Chemicals and the Effects of Inhibitors4.1 Introduction; 4.2 Overview of Biological Conversion; 4.3 Enzyme and Ethanol Fermentation Inhibitors Released during Pretreatment and/or Enzyme Hydrolysis; 4.3.1 Enzyme Inhibitors Derived from Plant Cell-wall Constituents (Lignin, Soluble Phenolics, and Hemicellulose); 4.3.2 Effect of Furfurals and Acetic Acid as Inhibitors of Ethanol Fermentations; 4.4 Hydrolysis of Pentose Sugar Oligomers Using Solid-acid Catalysts
  • 4.4.1 Application of Solid-acid Catalysts for Hydrolysis of Sugar Oligomers Derived from Lignocelluloses4.4.2 Factors Affecting Efficiency of Solid-acid-catalyzed Hydrolysis; 4.5 Conclusions; Acknowledgements; References; 5 Catalytic Strategies for Converting Lignocellulosic Carbohydrates to Fuels and Chemicals; 5.1 Introduction; 5.2 Biomass Conversion Strategies; 5.3 Criteria for Fuels and Chemicals; 5.3.1 General Considerations in the Production of Fuels and Fuel Additives; 5.3.2 Consideration for Specialty Chemicals; 5.4 Primary Feedstocks and Platforms; 5.4.1 Cellulose
Control code
836404777
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (568 pages)
Form of item
online
Isbn
9780470975824
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
(OCoLC)836404777

Library Locations

    • Curtis Laws Wilson LibraryBorrow it
      400 West 14th Street, Rolla, MO, 65409, US
      37.955220 -91.772210
Processing Feedback ...